Security Operation Center Concepts & |Inplenentation
Renaud Bi dou
r enaud. bi dou@ v2-t echnol ogi es. com

Abst ract

A Security QOperation Center (SOC) is made up of five distinct nodul es: event
generators, event collectors, nessage database, analysis engines and reaction
managenent software. The mai n probl em encountered when building a SOC is the
integration of all these nobdules, wusually built as autononous parts, while
mat ching availability, integrity and security of data and their transm ssion
channel s. In this paper we will discuss the functional architecture needed
to integrate those nodul es. Chapter one will introduce the concepts behind
each nodule and briefly describe common problens encountered with each of
t hem In chapter two we will design the global architecture of the SOC. W
will then focus on collection & analysis of data generated by sensors in
chapters three and four. A short conclusion will describe further research &
analysis to be perfornmed in the field of SOC design.

1 SCC Modul es

Security Operation Center is a generic term describing part or all of a
pl atform whose purpose is to provide detection and reaction services to
security incidents. According to this definition we can distinguish five
operations to be perforned by a SOC. security event generation, collection,
storage, analysis and reaction.

For ease we will start with the revolutionary definition of “boxes” given in
[1].

- E Boxes: Events generators

- D Boxes: Events databases

- R Boxes: Events reaction

W will then slightly alter the definition for A Boxes (given as “receive
reports & perform analysis”) to only “perform anal ysis”, |eaving the “collect
operation” of data from E Boxes to specific C Boxes.

- A Boxes: Events analysis

- C Boxes: Event collection & Formatting

Anot her box type will be defined as we wll need to nanage know edge of
protected platformcharacteristics, as well as the vulnerability and intrusion
si gnat ure dat abase.

- K Boxes: Know edge base

As it can be easily imagined, each box describes a functional group of
“nodul es” performng specific operations. As an exanple an “E Box” may be a
group of applications generating system events through the standard syslog
interface of the OS on which they run. . It could also be a pool of Network
| DS’ s. In the preceding exanples, nodules wuld be respectively the
applications and Network IDS' s.

From a macro point of view boxes would operate as described in Figure 1.

R Box

R Box . .
reaction and reporting

A Box + K Box

A Box incident analysis knowledge base

D Box
D Box formated messages database

C Boxes
collection boxes

C Box C Box

EB E B EB !B EB E Boxes
ox | | ox | | ox | | ox | | X | event generators : sensors & pollers

Figure 1: Boxes macro architecture

Besi de the obvious problem of data interchange format between nodul es, each
nmodul e type has its own limtations which we will describe hereafter:

E Boxes
E Boxes are responsible for event generation. We can distinguish two main
famlies of such Boxes: event based data generators (ie. sensors), which

generate events according to a specific operation performed on the OGS,
applications or over the network, and status based data generators (ie.
Pol l ers), which generate an event according to the reaction to a external
stimulus such as ping, data integrity checking or daenobn status check.

1.1.1 Sensors

The nost well known type of sensors are IDS's, be they host based or network
based. W can also add to this category virtually any filtering system
(network, application or wuser based) providing |ogging, ie. firewalls,
routers with ACLs, switches and Wreless HUBs inplenmenting MAC address
restriction, RAD US servers, SNWP stacks, etc. In the extreme, honeypots and
network sniffers are also to be considered as sensors. In the latter case,
each packet sniffed woul d generate an event!

Each sensor is to be considered as an autononous agent running in a hostile
envi ronnent and, matching characteristics given in [2],: run continually, be
fault tolerant, resist subversion, inpose a mininmal overhead, be configurable
& adaptabl e, be scal able, provides graceful degradation of service and all ow
dynami ¢ reconfiguration

However, bypassing and confusing techniques exists for each of them as
described in [3] and [4].

VWhat is nore, Host Based IDS's are still at an early stage of standardization
[5]1[6] as collection of data from multiple sources (rmainly OS calls and
application specific logging) and with different level of detail, is highly

specific to each devel opers’ sensitivity to security concerns..

1.1.2 Pollers

Pollers are a specific type of event generators. Their function is to
generate an event when a specific state is detected on a third-party system
The npst sinple analogy is to be nade with Network Minagenent Systens. In
this case, a polling station checks systens status (via ping, snnmp for
exanpl e). If a system appears to be down, the polling station generates an
alert to the Managenent Stati on.

In a security specific context, pollers wll be muinly responsible for
checking service status (in order to detect DoS) and data integrity (usually
web page content).

The main limtation encountered with pollers is performance, as it may be
difficult to setup systenms that would be able to poll hundreds of targets at
short intervals whilst non-disturbing the rmanaged systens operations

Conti nuous polling may inmpact system operations, leading, in the extrenme, to
CPU (or, in the worst case, network) resource starvation

1.2 C Boxes and D Boxes

Col l ection boxes’ purpose is to gather information from different sensors and
translate theminto a standard format, in order to have an honbgeneous base of
nmessages.

Once again availability and scalability of these boxes appears to be a mgjor
concern. However, such aspects can be nmanaged in a way simlar to that used
for any server-side service, using clusters, high availability and |Ioad
bal anced dedi cated hardware / appliances, etc.

The standard formatting of collected data (the second point described above),

appears far nore theoretical and still subject to controversy around the
security community. The 1ETF [define?] is working on standards for nessage
formatting as well as transmission protocols [7]. However, wunofficial

extensions seens already necessary for correlation purposes [8] as well as
di stributed sensor nmanagenent [9]..

D Boxes are the nore standard nodules we find in a SOC architecture. They are
dat abases.

The only SOC specific operation to be perforned by this Box type is a basic
| evel of correlation in order to identify and fuse duplicates either fromthe
sane or different sources.

Besi de classical concerns regarding database availability, integrity and
confidentiality, D Boxes wll minly face the problem of performance as
sensors may generate dozens of messages each second. Those messages will have
to be stored, processed and anal yzed as quickly as possible, in order to allow
atinmely reaction to intrusion attenpts or success.

C and D Boxes concepts will be detailed in Chapter 3.

1.3 A Boxes and K Boxes

Those nodul es are responsible for the analysis of events stored in D Boxes.
They are to perform various operations in order to provide qualified alert
nmessages.

This kind of operation is probably the one on which nost current researche
focuses [10], be it in ternms of correlation algorithns, false-positive nessage
detection, mathenatical representation [11] or distributed operating [12].

However, the diversity of such research and the early stage of inplenentations
(rmostly limted to proof of concept) lead to the design of a nodule that is
the most proprietary and non-standard part of the SOC. W will thus present
an approach dealing with the structural analysis of intrusion attenpts, as
wel | as behavior analysis i.e. alignment with the security policy.

It is evident that the analysis process needs inputs from a database in which
i ntrusion path characteristics, protected system nodel and security policy are
stored. This is the very purpose of K Boxes.

A and K Boxes concepts will be detailed in chapter 4.

1.4 R Boxes

R Box is a generic termused to define the ensenble of reaction and reporting
tools used to react against the offending events taking place on or within the
supervi sed systens.

Experience shows that this is a very subjective concept, as it involves GJ
ergonom cs, security policy enforcenment strategy, l|egal constraints and
contractual SLAs by the supervising teamtowards the client.

These subjective-lead constraints make it virtually inpossible to define
anything else than advice and best practice based on real-life experiences
over tine. . However, the inportance of R Boxes should not be wunder
estimated, as an intrusion attempt may well be perfectly analyzed and
qualified but the whole operations would be rendered useless if no appropriate
reaction could be launched within the appropriate del ay. The only possible
reaction woul d then be the infanous “post-nortem analysis”...

2 SOC gl obal architecture

The SOC gl obal architecture inplenments the different box types defined in the

precedi ng chapter. However, beside the pure technical aspects involved in
such an inplenentation, it is necessary to consider the supervision of an IT
infrastructure as a full operational project. W will thus follow the

functional steps of such a project in order to describe both the purpose and
the concepts of selected parts of the architecture described in figure 2.

Real-time

Monitoring Permanent Risk Evaluation -
. Statistical - . L.
Analysis »> Security Activity
- Incident -
o Handling > System Status
R’ Box (SOC Console) R" Box (Customer Portal)
—
e /‘F\
3 N
2 Bl Alerts m) Vulnerability
5 Database
< < Stats J I
o
% e Correlation - Customer
E S G |
2 i
[a)
D Box (Local events database) f::BoxI . T Seciy Poiey
T orrelation
T ;
Engine) Client
% Configuration
| Record
Windows 2k / XP k— &Ar//
Linux K—
Apache K— D K Box (Knowledge Base)
o s AN syslog
3 S Kk SNMP
EJ crece A 1 SMTP @ Host based IDS
S Firewal 1 k— 2 ost base
= P | g K—{ HTTP/XML oS
isco Pix
B 9 Snort k| H] Proprietary Integrity Checking
g ISs k— S . Network equipment
B Network IDS
%] il il A
2 Tripwire K— Status Poling Frowal oS Client System
i Modelisation
&— Integrity Applications
C Box (Collection & Formating Modules) H
T E Box (Event Generators) Monitored System

Figure 2: SOC Architecture

2.1 Data acquisition

Before setting up sensors and designing any correlation or analysis rule, it
is necessary to evaluate the overall security level of the IT infrastructure
to be supervised. This will make it possible to determine if an intrusion
path may effectively lead to an intrusion on the target system and the
criticity associated to such an intrusion attenpt.

Anot her point to be defined is the security policy, nostly in terms of access
rights, permtted operations, etc

2.1.1 Technical and organi zational inventory

Security level evaluation can be divided into two parts: vulnerability
assessnment and system criticity. This data should be stored in a specific
nodul e of the Know edge Base: the Cient Configuration Record (CCR).

Acqui sition of this data may be perfornmed in two different ways, the Black Box
approach and the White Box approach. The former is a typical output from a
blind penetration testing process. Such a process is widely inplenmented and
qui ckly provides results. However, the latter approach, as described in [13],
seens nore appropriate to handl e exhaustive inventory of supervised systens
and provide intrusion path generation.

System criticity is to be defined according to the relative inpact that an
intrusion can have for each type of consequence. . As such an approach is
very subjective, the work nmust be perforned using a standard nethod for attack
taxonony [14] and classification. However the |lack of definitions (be they a
list of terms or matrices-based) that neet the six characteristics of an
accept abl e taxonony [15], enforces an arbitrary choi ce. It is then possible
to either use a specific definition or, to rely on an external source such as
“unaut horized results” defined in [16].

2.1.2 Wulnerability database

The vulnerability database holds information about security breaches and
i nsecure behavior that would either inpact the overall security level or that
could be exploited by an attacker in order to perform an intrusion. The
dat abase format nust make it possible to include the following types of
vul nerabilities.

- structural wvulnerabilities, ie. vulnerabilities internal to a specific
software such as a buffer overflow, format string, race conditions, etc. This
part of the database is obviously the easiest to inplenment, feed and maintain.
The mgjority of these processes can be scripted, as information is wdely
avail able from public sources such as public nmailing lists, software editor
advi sories and web sites. However a validation and correlation step (if
mul tiple sources are used) should be nandatory and perforned by a expert team

- functional vul nerabilities, depending on configuration, operati ona
behavi or, users, etc. These vulnerabilities differ fromthe previous ones as
they deeply depend on the environment in which they live. As an exanple, an
NFS rmount should be considered a functional vulnerability given that an
i ntruder can get into an account/host allowing themto nmount the file system

Therefore, it will be assuned that many such vulnerabilities are present on
systens but may be considered as “inactive” as long as at |least one of the
needed conditions is not satisfied. The hardest part is the definition /

formatting of such vulnerabilities and the feeding of the database. The need
for expert teams in each field (CS specific, applications, network, etc.) is
obvi ous.

- topol ogy-based vulnerabilities, including networking inmpact on intrusions

and their consequences. This part of the database includes network-based
vul nerabilities (sniffing, spoofing, etc.) as well as the inpact of filters on
the path to an intrusion. Such vulnerabilities cannot fit into a

vul nerability database unless it supports a m ni num of topol ogy nodeling.

2.1.3 Security policy

The next step of the supervised systeminventory is an organi zati onal one and,
nore specifically, a review of security policy aspects that would inpact
ei ther event generation and / or the reaction-reporting processes.

It is clear that the two major aspects of security policy that need to be
reviewed are authorization and testing / audit procedures. Those two aspects

will provide information concerning behavior that sensors would detect.
Events generated (administrator |ogin, portscans, etc.) will then be marked as
matching with security policy criteria. Ohers will be analyzed as possible

part of an intrusion attenpt.
Those pieces of information are stored in the Know edge Base.

2.1.4 Status evaluation

The | ast part of the Know edge Base is a detailed security |evel evaluation of
the systens to be nonitored. The objective is to process such an evaluation
through an analyzing engine capable of integrating the three Kkinds of
vul nerabilities given in 82.1.2, as well as security policy constraints. The
engi ne should provide a list of vulnerabilities each systemis exposed to, the
relative inmpact of each vulnerability and intrusion paths leading to
activation of “inactive” vulnerabilities.

In order to be reliable, such an evaluation nust be re-generated each tinme a
new vul nerability is found or one of the nonitored systemis changed.

2.2 Event generation, collection and storage

E Boxes should be setup to generate as nmuch raw informati on as possible. This
information can be sent in “real-tine” to C Boxes and / or can be stored
locally for future collection by C Boxes, behaving in the sanme way that an
RMON [17] probe does.

2.2.1 Exhaustivity and performances

As described above, a nmaximum anount of raw information should be nade
available to C boxes. Indeed discrimnation and qualification of events wll
be made by the correlation engine, which will discard uninportant infornmation

However, this theoretical point of view clearly has linmtations in terns of

per f or mance. If such an approach can reasonably be inplenented for 1DS
systens, it quickly appears to be unacceptable in the case of OS events as
wel | as those of nost applications. Col l ection of each htm access log for a

large web farmis one of the npst clear exanples of such a limtation..

It is thus necessary to pre-filter information at the source, ie. on the E
Box. Such a filter will drastically reduce the amunt of data collected.
However, applying a filter BEFORE generating events neans that a first
qualification is performed. This qualification nay be driven by two factors.

- structural specifications; in this case some event will not be generated as
they concern components (hardware, OS, applications, etc.) that are not
present on the supervised system This kind of filter is typically set on
IDS's and firewalls / filtering equipnents.

- security policy pre-filters; those filters are set in order not to generate
events as they conply with the security policy. As an exanple “su -* conmand
could be allowed to a user within a specific time range, or a portscan
initiated froma specific I P address, etc.

Pre-filters significantly reduce resources needed by collectors, however they
have two mai n drawbacks.

The first is the difficulty to maintain such distributed filters. Ri gor ous
change nanagenent procedures nust be put in place in order to make sure that
any change on the supervised systens or the security policy will be reported
to the relevant pre-filter. VWat is nore, nmost of those pre-filters are set
at the application level, therefore using heterogeneous configuration files
and thus increasing the conplexity of nanagenent.

The second one is the lack of exhaustivity concerning security related events
on the systens. If this nakes statistics far less reliable, it also may nmake
t hi ngs harder for post-nortem analysis.

2.2.2 Collection and storage

The main operations perforned by collectors are the reception of raw nessages
t hrough different protocols and source type identification / formatting. Once
a message is formatted, it is stored into an event database. Per f or mances
and availability issues naturally inply the design of a scalable architecture
which allows |arge distribution of collectors and dat abases around a network.

Coll ection and storage will be detailed in chapter 3
2.3 Data anal ysis and reporting

2.3.1 Structural and behavior-lead alerts

The main operations performed that generate alerts are the follow ng:
correlation, structural analysis, intrusion path analysis and behavior
anal ysi s.

Correlation is a stand-alone operation leading to the creation of contexts
agai nst which further analysis will be nade, in order to check if they match
the characteristics of an intrusion attenpt.

Structural analysis may be conpared to an advanced pattern matching process

used to determine if events stored within a certain context lead to a known
intrusion path (or attack tree [18]). Intrusion path analysis is the next
step whose output will provide information about the exposure of the target
system to the intrusion attenpt detected. Then, the behavior analysis wll
integrate elements from the security policy in order to determine if the
intrusion attenpt is allowed or not.

The purpose of such operations is to generate alerts that not only match the
structural path of intrusion (ie. scan, fingerprinting, exploiting,
backdooring & cleaning), but also take care of the security policy defined, as
well as criticity of targets systens.

Data analysis will be detailed in chapter 4.

2.3.2 Interfaces
Two kind of interfaces are nade avail able: The SOC console and the End-user
portal .

2.3.2.1 SCC Consol e

The SOC console (R Box) is designed for internal analysis and presents nostly
unformatted data from different parts of the K Boxes. The three interfaces
are:

- real-time nonitoring interfaces, which provide raw data from the nessages
part of the K box. This allows basic filtering functions such as “egrep” in
order to isolate specific nessages and is used for debugging, in depth
anal ysis of specific events and replay of events.

- incident handling interface, is the internal engine used for generation and
followup of incident tickets and reaction procedures described bel ow It
provides qualified alert information as well as nunerous debugging data and
checkpoi nt s. It is the nore conplex interface, as it nust fit either wth
operational performance, ergonomcs and advanced filters or, research and
identification functions. Such an interface is the very corner-stone of a
timely and appropriate human reaction to intrusions.

- statistical analysis interface, provides raw data of security activity
statistics over short, nedium and long term periods. This is mainly used as
an under-1layer for graphical representation

2.3.2.2 End-user portal

The end-user portal provides formatted data of activity. It is designed in
order to provide multi-level reporting, for targets ranging from security
engi neers to high-level nanagenent through Security Oficers. It is divided

into three nain parts

- permanent risk evaluation interface, gives information about the current
security level of supervised systens configuration and software versions. It
provi des information on the overall security level, vul nerability
characteristics and criticity, intrusion scenarios and patch or configuration
details.

- security activity, is a md-term to long-term reporting, providing macro
data about intrusion types, frequency, sources and consequences on the
supervi sed system At a lower level, it is to be used in order to determ ne
trends and identify specific itens such as a recurring attack sources or
nostly targeted services to watch for.

- system status, which is the “pseudo real-tine” interface for end-user,
allowing a close followup of open incidents, systens under attack and
intrusion paths activated by intruders. It also provides information about
the reaction and escalation procedure currently occurring in order to
circunscribe the attack.

2.3.3 Reaction and escal ati on procedures

Eventual ly, reacting appropriately to an attack is nostly a question of
organi zation and procedures to be applied by the incident response teanms [19].
Reaction ranges from passive nonitoring for further information through to
target system enmergency halt through CERT incident reporting [20]. O course

appropriate reaction should be determ ned before an attack takes place and
procedures mnust be validated then securely (mainly in terms of integrity)
stored and nmade accessible to supervision teans.

In sinple terns, a certain level of escalation nust be defined in order to
ensure quick and effective reaction, in parallel with the use of appropriate
human resources. Escal ation procedures are given in figure 3. Another aspect
to be specified is the delay, defined as t1 in the figure above, in which the
reacti on procedure nmust be | aunched, according to attack criticity. Once this
delay is exhausted, escalation to the next (upper) level should be automatic.

(Qualified Event) Analysis Engine
Incident Ticket Open
t0 set
t1 reached) .
Alert Functional Analysis
NO Known
i il
In depht analysis - Alert
l YES
Level 2 Team Solution _ YES
Security Experts Found
Level 1 Team
Supervision Agents
Workaround
Simulation and testing Reaction Launch
Level 3 Team
LAB
Specific reaction definition Incident closure
Source Tracking
CERT reporting

Fi gure 3: Escal ati on Procedure

As we can see three escalation |evels have been defined

- the first level should be what we refer to as agents, i.e. m d-t echni cal
| evel staff, which are able to understand events generated by A Boxes as well
as the reaction procedure to apply (this is necessary as it is inportant to be
able to know when the application of such a procedure failed). Agent s
escalate incidents to level two, if the event does not match “known events” or
“pre-defined reaction” criteria or if the tinme Iimt (tl) is reached dependi ng
upon the incident criticity.

- the second |evel should be a team of technical experts. These experts are
responsi ble for the analysis of intrusion events that have not been defined a
priori. Their priority is to qualify events with the help of SOC console
interfaces (cf. 82.3.2.1) and provide a workaround to be applied by |evel one
agents, pending further research or pernmanent sol utions.

- the third level should be a “laboratory” in which suspicious packets, system
operations and so on will be re-played, in order to determ ne the nature of
the unknown intrusion and provide a fully qualified reaction procedure. The
lab will also be responsible for contacting vendors of CS, applications,
hardware, etc. for patch design and / or their application.

3 Collection and storage

3.1 Data collection
Col l ecting data from heterogeneous sources inplies the setup of two kinds of

agents: protocol and application. The fornmer collect information from E
Boxes, the latter parses information for storage in a “pseudo-standard”
format. Those two nodules are connected by a dispatcher. Such an

architecture allows high-availability and | oad-bal ancing systens to be set at
any level into the architecture.

Figure 4 shows some architecture exanples, based on the details provided
bel ow.

distributed collection architecture
with /[HA & LB

Figure 4: Collection Macro Architecture Exanples

local collection architecture

I
|
E Box E Box E Box : E Box E Box E Box
|
I
|
|
] |
Encryption I
I
| \ 4 \ 4 \ 4
| protocol protocol protocol
: agent agent agent
l : maqueue mqueue mqueue
Decryption |
|
* | dispatcher
| HA & LB | '
| maqueue mqueue mqueue
¥ ¥ ¥ i
protocol protocol protocol |
agent agent agent I application application application
T T T agent agent agent
socket socket socket : 9 9 g
I
HA & LB | :
¥ ¥ |
|
dispatcher dispatcher :
sockets sockets :
. |
ERE Fovass |
HA&LB !
Y | A | |
application application application |
agent agent agent |
|
|
I
I
|

3.1.1 Protocol agents

3.1.1.1 Basic functions

Protocol agents are designed to receive information from specific transport
protocols, such as syslog, snnp, snmp, htm, etc. They act |ike server side
applications and their only purpose is to listen to incom ng connections from
E Boxes and make collected data avail able to the dispatcher (cf. 83.1.3).

The sinplicity of such agents make them easy to inplenent and maintain.

The raw format storage is usually a sinple file, though direct transfer to the
di spatcher through naned pipes, sockets or shared nenory ensures better
per f or mance.

3.1.1.2 Performance and availability

An interesting part of this approach, is the ease with which one can depl oy
farms of agents, as they are very sinple applications that don not share data.
It is thus possible, for very large systems to deploy syslog, snnmp, snmp
servers array, etc., which will be served by standard HA & LB equipnent.
Cluster architecture is also a possibility.

The objective is to provide a scalable and available collection platform
whi chever approach is taken.

3.1.1.3 Security

From a security point of view, the npbst inportant point is to ensure the
integrity of data collected by agents. This is particularly inmportant if
data is to be transferred on a shared or un-trusted network.

Qoviously, nost protocols used to collect information, sit on top of the

unreliable UDP |ayer. It seens therefore necessary to encapsul ate such data
into a secure tunnel in order to ensure that data will reach the collection
agent and that it will not be altered during transport. This last point also
concerns data sent over TCP (just like through snmtp or http). However, in

order to maintain a high performance level and allow better HA and LB
operations, it would be intelligent to perform encryption-related operations
on dedi cated equi prent, on each side of the communication

3.1.2 Dispatcher and application agents

3.1.2.1 The dispatcher

The dispatcher’s purpose is to deternine the source-type of an incom ng event
and then forward the original nessage to the appropriate application agent
Once again, inplenentation is relatively trivial, once a specific pattern has
been found for each source-type fromwhich the data nay be received

Aut ononous operations perfornmed by the dispatcher are the foll ow ng:

- listen to an inconm ng channel from protocol agents, such as socket, nanmed
pi pe, systemV nessage queue, etc

- check pattern matching against a patterns database that should be pre-Ioaded
in nenory for performances considerations. Thi s dat abase contains patterns
specific to each couple (E Box type, Xmt protocol), as nunmerous event

generators use different nessages formats depending on the transm ssion
pr ot ocol .

- send the original nmessage to an E Box specific application agent through any
sui tabl e out goi ng channel

3.1.2.2 Application agents

Application agents are specific to each (E Box, Xmit protocol) couple. They
perform formatti ng of messages so that they match with the generic nodel of
t he nessage dat abase

Aut ononous operations performed by application agents are:

- listen to an incom ng channel from di spatchers, such as socket, nanmed pipe
system V nessage queue etc

- parse the original nessage into standard fields

- transmt the formatted message to corresponding D Boxes. Once again any
ki nd of channel can be used, depending on the D Box nature (database, chained
pointers, etc.).

3.1.2.3 Dispatchers and application agents mnerging

, As fully distributed architecture theoretically appears to be the ultimate
solution for scalability and high-availability, some inplenentations may need
redundant operations to perform functions of dispatchers and application
agents.

As an exanple, based on a regexp parsing in perl, the follow ng operation
woul d be performed by the dispatcher in order to identify a Snort 1.8.x alert
in syslog format:

if($line =~ /.*snort: \[\d+:\d+:\d+H\] .*) {
send_to_snort_1.8 sysl og_agent ($line)
}

and the application agent would performthe foll ow ng operation:

if($line =~ /. *\[\d+:\d+:\d+*\] (.*) \[Cassification: (.*)\] \[Priority:.*\]:
VGO G ->09)) A

fill formatted nessages fields cf. 83.2

$nmegt ype = “Snort 1.8 — Alert”;

$proto = get prot obynane($3);

$src = $4;
$dst = $5;
$intrusion_type = $intrusion_type[SnortlntrusionType($2)];
$info = $1;
}
It appears that these two operations overlap and that, in the case of a

centralized platform the follow ng operation would reduce resource usage and
provi de exactly the sanme result:

if($line =~ [.*snort: \[\d+:\d+:\d+\] (.%) \[O assification: (-*)\V]
\[Priority:.*\]: \{(.*)\} (.*) ->(.*)]) {

$nmegtype = $nsgtype[1];
$proto = get prot obynane($3);

$src = $4;

$dst = $5;

$intrusion_type = $intrusion_type[SnortlntrusionType($2)];
$info = $1;

In sone cases, it is then probable that dispatcher and application agents will
be nmerged for the sake of performance and sinplicity.

3.2 Data formatting and storage

Two kind of data have to be formatted in a “standard” manner (ie. honbgeneous
and understandable by any nodule of the SOC): host entry and collected
nmessages.

3.2.1 Host entry

3.2.1.1 Unique host identification
The need for a standardi zed host data structure appears as:

- sensors may transmt host information in IP address format or FQDN (Full
Qualified Dormai n Nane) format.

- multi-homng techniques provides nultiple IP address for the sane physical
system

- virtual host techniques provides multiple FQDN for the sane physical system

- HA & LB systens may hide nultiple systems behind a single IP address or
FQDN.

It appears that identifying a host either by its IP address or its FQDN is not
reliable. Wat is nmore, in the never-ending need for performance, (reverse)
DNS | ookup cannot be perforned for each new (IP address) FQN detected in
| 0gs.

It is then necessary to rely on a third-party ID |IP address and FCDN
i ndependent: the host token.

3.2.1.2 Host entry data structure

The data structure to store host information follows the scheme given in
Fi gure 5.

The function and inplenmentation of each part is trivial and should not need
further explanation.

Host Table

Host Token
@Host_IP_Table
@Host_FQDN_Table

Host IP Table Host IP Table
ID ID
IP Address FQDN

Figure 5: Host Entry Data Structure
3.2.1.3 Data nmanagenent and nmi nt enance

The best way to handl e such data w thout acceding to a database or browsing a
tree of chained structures, is to generate a hash-table hol ding correspondi ng
host tokens. Such a hash-table should be created in nenory at system startup
and updated each tine a new address or FQDN is identified.

An update of the original database should, of course, be planned in order to
save new data. The delay between each synchronization is to be defined
according to perfornmances constraints.

3. 2.2 Messages

3.2.2.1 Honogeneous nessages format structure

Worki ng on data generated by the different types of equipnment, transmitted via
different protocols requires “standard” fornmatting. Al though an effort has
been made to define a worldw de standard with IDVEF [21], it appears that the
XML bus used is too heavy and resources consum ng, for our purposes of event
correlation. However, a separate translation process MJIST be inplemented for
| DVEF conpl i ance.

Structure of a formatted nessage is the follow ng

Field Attributes Descri pti on

id Uni que Uni que nessage I D

sensor _id Not Nul | Uni que Sensor |ID

nsg_t ype Not Nul | Type of nessage (ipchains, snort-1.8.x-alert etc.)
epoch_tinme |Not Null Date in epoch format of event generation
sour ce Intrusion Source Host Token

t ar get I ntrusion Target Host Token

proto Prot ocol nunber [22]

src_port Intrusion source port nunber

tgt_port Intrusion target port nunber

info Addi tional info

int_type_id|Not Null Intrusion type ID (Filter, Access etc.)
int_id Intrusion ID

nmessage Not Nul | Origi nal nmessage

Table 1: Formatted nmessage structure

3.2.2.2 Third-party structures
ot her

As descri bed

in Table 1,

data is involved

in the creation of

formatted

nmessages. Rel ati ons between each structure are given in Figure 6.
Message Table
ID
— Sensor ID
Message Type ID
Epoch Time
P Host Table
Source
Target ———I:E Host Token
Proto @Host_IP_Table
Source Port @Host_FQDN_Table
Target Port ; \
Info
- Host IP Table Host IP Table
Intrusion Type ID —
Intrusion ID ID ID
Original Message IP Address FQDN
Sensors Table
=g
Sensor Type Table
Sensor ID
Sensor Type ID - Sensor Type ID
Host Token Sensor Type Description
Info
L Msg Type Table
Msg Type ID
Msg Type Description
Intrusion Table Intrusion Type Table
- Intrusion ID : Intrusion Type ID
BID Intrusion Type Description
CVE
Arachnids ID
Intrusion Type ID —
Figure 6: Formatted nmessage definition structures
Apart of the Host Table data structure described in 83.2.1, the tables
involved in the building of a formatted nessage are the foll ow ng:
- Sensor Table, this table is designed to identify each sensor on the
supervi sed system This sensor is given a unique ID and a sensor type.
Additional optional data, are a host token (if the sensor is IP) and a
descri ption.
- Sensor Type Table, this table is only designed to provide a hunan readable

description of each sensor type.

- Message Type Table, this table provides a human readable description of
Message Type | D

- Intrusion Table, the purpose of this table is to provide matches from
different references, to a simlar attack. As exanples, we give BID (Bugtraq
ID), CVE ID and Arachnids ID. Qhers can be integrated.

- Intrusion Type Table, this table defines major intrusion type famlies such
as filter, scan, fingerprinting, exploit, access, etc.

As for the Host Entry Table, nost data involved in the building of a formatted
message shoul d be | oaded in nenory at startup and regularly synchroni zed.

4 Correlation
4.1 Overview

4.1.1 Operating the correlation

The correlation’s purpose is to analyze conmplex information sequences and
produce sinple, synthesized and accurate events. In order to generate such
qualified events, five operations are to be perforned:

- duplicates identification, the first, obvious, operation is to identify
duplicates and set a specific flag in order to keep the information and
continue without the need keep nultiple identical nessages.

- sequence patterns matching, is the nost conmon operation perfornmed by a
correl ati on engine. Its purpose is to identify a sequence of nessages which
woul d be characteristic of an intrusion attenpt. It nmakes it possible to
identify on-going intrusion processes, as well as conplex intrusion scenari os.

- tine pattern matching, is designed to include another inportant dimension in
intrusion analysis: tinme. This is muinly used for context (see below
management, as well as slow and distributed intrusion processes.

- system exposure and criticity analysis, provides information about the
target systemis vulnerability to detected intrusion attenpts. I ndeed, it
seens inappropriate to have a SOC generating alarns concerning an intrusion
scenario based on a vulnerability that the target system is not exposed to.
Anot her piece of information is the criticity of the intrusion i.e. its
overall inmpact on the supervised system This helps to manage the priorities
internms of reaction to multiple incidents.

- security policy matching, is a behavior-based filter that elimnates
specific events if they match security policy criteria such as admnistrator
login, identification processes and authorizations / restrictions.

A gl obal overview of correlation operations is given in figure 7 bel ow.

Alert Stats

Security Policy

Date /
Time / Source
Match

System Status

System
Exposure

Intrusion Path

Vulnerability
Database

Message
Analysis

www.custl.com

hackl.com

hackl.com www.custl.com
hack2.com mail.custl.com
A mail.custl.com hack2.com
hackl.com www.custl.com
hack3.com WWW.CUst2.com
A www.cust2.com A hack3.com
hack3.com mail.custl.com
hack2.com Www.cust2.com
Dispatch

Contexts

Behavior
Analysis

Functional
Analysis

Structural
Analysis

Source &
Target
Correlation

Correlation

4.1.2

Formated messages

Figure 7: Main correl ation operations

I ntroduction to contexts

The anal ysis defined above is based upon a specific structure called
Al'l correlation operations are performed agai nst these structures.

terns,

the definition of a context
data matching a comon criteria.

is the follow ng:

a contai ner of

cont exts.
In sinmple
formatted

Therefore, any message stored in the formatted nessage database is to be part
of one or nore contexts. Correlation operations will be done in parallel so
that they can be run simultaneously on each context.

Two ki nds of context nanagenent approach can be inpl enmented
The first one is to define independent and distinct contexts. Each context

will contain nmessages nmatching every criteria. W define such an
architecture as an array of contexts.

The second approach is a hierarchical one. Top level contexts matching a
limted nunber of criteria are defined. Then sub-contexts, based on different
criteria, are created and so on. This will be defined hereafter as context
tree.

As is to be expected, none of the preceding approaches neet all needs, be
they in ternms of performance or functionality. A mxed architecture will thus
have to be defined.

4.2 Contexts

4.2.1 Context definition criteria

Defining context criteria nmust be done according to security related events
that the SOC must react to, be they distributed scanning operations, finger-
printing, massive exploit testing, account brute forcing, spammng and so on.

A full functional architecture of contexts is given in figure 8 (84.2.2.1).

4.2.1.2 Source and target
The first obvious criteria is the attacking and attacked host’s |ID, which has
to be standardized (cf. 83.2.1).

- source, defining source as a context creation criteria allows sweeps
detection, identification of systens used as attack relays or conprom sed by
wor ms and targeted hack-proofing.

- target, contexts created by target criteria wll provide information on
scans (be they distributed, slow or “normal”) and, should it even be noticed
intrusion attenpts and system conprom ses

Two arrays of context should then be defined, one with context matching
sources, another matching targets. Each context of each array should then be
considered as a top-level context for the context trees. The criteria to be
mat ched by the smallest “branches” would be target ID (for contexts created by
the source ID match) or source ID (for contexts created by the source ID
mat ch) .

4.2.1.3 Protocol and ports

VWil st working with trivial data, the protocols and the ports of the targeted
systenms should form the criteria for the next level of context ”branches”.
This is mainly done in order to isolate single scanning operations from heavy
repetitive attenpts to conpromise a system through a specific application.
VWhat is nore, it helps to identify the various steps of an intrusion.

I ndeed one of the npbst common intrusion scenario, is a w de portscan sweep
followed by fingerprinting / version identification on open ports followed by
an exploit |aunched on systens believed to be vul nerable.

4.2.1.4 Intrusion type

In order to identify which type of nessage is stored, thus starting a nore
accurate analysis of nmessages, a next |evel of context generation is perforned
according to the intrusion type ID (defined in 83.2. 2. 2). An exanpl e of
intrusion type ID definition is given in table 2 bel ow

Intrusion Type |ID Descri pti on

0 / Unknown Unknown i ntrusion type

Ixx - ldentification Target identification

100 / Filtered Packets filtered by firewalls, ACLs etc
110 / Scan Basi ¢ portscan detection

120 / Fingerprinting Target identification

2xx - Exploits Bul k intrusion attenpts

200 / Exploit Expl oit | aunch detection

3xx — Denial of Service |Successful DoS attacks

300 / Denial of Service |Partial DoS attack

310 / Denial of Service |d obal DoS attack

4dxx — Security Bypass Security policy bypass attenpts

400 / Spoofing 1P/ MAC spoofing

410 / Content Content filtering bypass

420 | Privil eges Privilege gaining attenpts

5xx — System conprom se |Attenpts to conpronmise the target system
510 / Account Success Account access

520 / Data Failure Access to private data attenpts

530 / Integrity Systemintegrity conprom se

Table 2: Intrusion type ID

4.2.1.5 Intrusion ID

The last “branch” of contexts contains specific intrusion ID i.e. t he
characterization of each message. At this level we reach the atomic (except
for duplicates — cf. 84.2.2.2) dinension of each nessage. This field refers
to the Intrusion Table (cf. 8§3.2.2.2) and will be responsible for the link
between the correlation engine and system status information stored in the
Know edge Base (cf. figure 2 and §2.1.1).

4.2.2 Contexts structure
As any correlation operation is exclusively performed on contexts, it appears
that their structure is probably one of the npbst inportant aspects of the SCC

4.2.2.1 Functional architecture

The functional architecture has been described in the preceding chapter. It
is made up of an array of context trees. Each tree contains 4 |evel of
branches, as described in figure 8.

Array of source contexts

Source
Host Token

Target Target Target Target
Host Token Host Token Host Token Host Token
Target Target Target
proto.port proto.port proto.port
Int. Type Int. Type Int. Type Int. Type
ID ID ID ID
Intrusion Intrusion Intrusion Intrusion Intrusion
ID ID ID ID ID

Fi gure 8: Contexts functional architecture

4.2.2.2 Data structure
In order to handle the architecture defined above, we need to inplenent a
structure that will ensure proper storage and access to information.

Figure 9 describes a scheme for context inplenentation. As PERL natively
i npl enents arrays and hash-tables we will use the PERL notation. However,
this is not necessarily a recommended i npl erent ati on.

In this inplenmentation exanple the following fields are defined.

- start_time and stop_tine, these fields are found in each branch of the
context structure. It provides information on time the first and |[ast
messages concerning a given branch (and dependent sub-branches) were
gener at ed.

- duplicate, gives the nunber of duplicate nessages. Dupl i cate nessages
contain exactly the sane information from one nessage to another except for
the tinme information.

O her fields are self-explanatory or have been expl ai ned al ready.

Hosts Table %AttackSources

- source attack hashtable address ——

$AttackSources{$source}

- target detail hashtable address ——
start_time First reception time
stop_time Last reception time

Intrusion Type Table ${$AttackSources{$source}}{$target}
proto.tgt_port (protocol, target port) id
start_time First reception time
stop_time Last reception time

. 0 Unknown array address ~ ——

P 100 Filtered array address —

b‘ 530 Integrity array address ’—

${{SAttackSources{$source}}{$target}}[$int_type]

attack_info_id attack info hashtable address ——
start_time First reception time
stop_time Last reception time
Intrusion Type Table ${{{$AttackSources{$source}}{$target}}[$int_type]}[attack_info_id]
I - intrusion_id Intrusion id

duplicate Duplicate info
start_time First reception time
stop_time Last reception time

Figure 9: Contexts inplenmentation schene

4.2.3 Contexts status
Anot her inportant characteristic of context is its status. W define three
di stinct statusesas detailed bel ow

- active, context matches specific criteria (usually based on time but could
be any other criteria), which could be characteristic of an on-going intrusion
process. Typically, such a context appears to be under a heavy |load fromthe
arrival of new nessage and its analysis by the correlation engine should be
set to the highest priority possible.

- inactive, such a context either does not match “active” criteria or did not
recei ve a specific closure code. This nmeans that it is no | onger anal yzed by
the correlation engine, but that it can be reactivated by the next nessage
mat chi ng the sanme context criteria.

- closed, in this state a context is conpleted. Any new message natching
this context criteria will create a new context.

Cont ext status nmanagenent is summarized in figure 10

New Message

(New Messages) b‘ Active Inactive

Timeout

L Closure Code)-¢—

Fi gure 10: Context status managenent

4.3 Analysis

4.3.1 Structural analysis
The purpose of structural analysis is to identify on going intrusion attenpts,

manage context inactivity status and context closure conditions. In sinple
terms, structural analysis is a set of operations perfornmed by independent
nmodul es on each context. Each nodule is activated by a specific nessage and

performs anal ysis using a “standard” semanti c.

4.3.1.1 Analysis nodul es structure

The output of the analysis nmodules is the result of several |ogical operations
bet ween autononpbus conditions against fields of contexts. Figure 11
descri bes nmenbers of such operations.

‘ Analysis Module ‘

A
| |

‘ Message Correlation ‘ || ‘ Message Correlation ‘

Field Condition \&&\ Field Condition \&&\ Field Condition

Figure 11: Analysis nodule structure

Field conditions have the followi ng structure

field operator <field | value> [!]

It appears that the power of structural analysis relies on the nunber of
operators made avail abl e. However, the very structure of contexts provides
enbedded operations such as source, target, port correlation. This not only
i ncreases the nunber of “native” operators but also inproves significantly the
per formances of structural analysis.

The ! sign indicates that the field condition is to be matched in order to
activate the nodule (cf. below

4.3.1.2 Analysis nodul e activation
Two kind of events can activate anal ysis nodul es: nessages and tine.

- messages, as described above, sone field conditions nmust be matched in order
to activate an anal ysis nodul e. A header containing field conditions to be
met, is then generated for each analysis nodule. G ven the structure of
analysis module, it appears that the header will be a set of logical OR
operations, whose nenbers will be field conditions that require the |east
amount of resources to be eval uated.

- time, the analysis modul e header may also contain tiner information forcing
the correlation to be eval uat ed. This is mainly used for context closure and
time dependent intrusions detection such as (slow) portscans, brute forcing
et c.

4.3.2 Advanced correl ation

Advanced correl ation operations are performed in order to define the criticity
of an intrusion attenpt and evaluate if such an intrusion attenpt is permtted
according to the security policy.

4.3.2.1 Functional analysis

This second correlation step is perfornmed in order to eval uate system exposure
to the intrusion and the overall inpact of such an intrusion on the supervised
system

Once the structural analysis has provided information about an occurring
intrusion attenmpt, a request is made to Custoner Status part of the K Box.
This request contains the Intrusion ID and the Host token of the target. The
response provides the follow ng pieces of information:

- criticity, is a value froman arbitrary scale, typically info-warning-mnor-
maj or-critical based

- closure code, if the context is to be closed, usually because the target is
not inpacted by the intrusion attenpt.

- message, a new formatted nessage to be appended to the actual context, that
may activate additional analysis nodul es.

4.3.2.2 Behavior analysis

The purpose of this last analysis is to define if the attenpts nmatch the
security policy. This is mainly used to manage access to accounts but can
al so be inplemented in the case of pre-programmed audits, portscans, etc.. In
such a situation a closure code is sent to the context.

Technically, this analysis is performed in exactly the same way as structural
analysis i.e. via specific nodules whose structure is |oaded from the
security policy part of the K Box.

5 Concl usi on

The conplexity of SOC setup is nobre a question of the integration than the
i npl enentati on of individual nodules. The emergi ng standards shoul d provide
hel p in r educi ng gaps between theoretical appr oaches, proprietary
i mpl enent ati ons and st and- al one systens.

In the neantine, intrusions are clearly taking place and there is thus a need

for operational supervision systens today. Experi ence shows that a pragmatic
approach needs to be taken in order to inplenent a professional SOC that can
provide reliable results. The theory described above forns the franmework

for deploying such a SOC.

d ossary

A Box: Events anal ysis nodul e

C Box: Event collection & Formatting nodul e
CCR dient Configuration Record
D Box: Events databases nodul e
E Box: Events generators nodul e
FQDN: Full Qualified Domai n Nane
HA: High-Availability

K Box: Know edge base

LB: Load-Bal anci ng

R Box: Events reaction nodul e
SOC. Security Qperation Center

Bi bl i ogr aphy

[1] Network Intrusion Detection — An Analyst’s Handbook - Second Edition -
St ephen Northcutt, Judy Novak — New Riders — |ISBN. 0-7357-1008-2

[2] I ntrusion detection using autononpbus agents — Eugene H. Spafford, Diego
Zamboni — Conputer Networks 34 (2000) 547-570

[3]Bypassing Intrusion Detection Systems — Ron Qula - Network Security
W zar ds

[4] I nsertion, Evasion and Denial of Service: Eluding Network Intrusion
Detection - Tom Ptacek, Tinothy Newsham

[5] Application-Integrated Data Collection for Security Mnitoring — Magnus
Almgren, U f Lindgvist — SRl International

[6]Interfacing Trusted Applications with Intrusion Detection Systems — Marc
Wl z, Andrew Hutchison — University of Cape Town

[7]1ETF Intrusion Detection Wrking Goup - M Erlinger, S St ani f ord-
Chen, et al.

[8]Probabilistic Alert Corelation — Alfonso Valdes and Keith Skinner — SR
I nt ernati onal

[9] Designing a Wb of H gh-Configurable Intrusion Detection Sensors -
G ovanni Vigna, Richard A Kemmerer and Per Blix — Reliable Software
Group — University of California Santa Barbara

[10] Recent Advances in Intrusion Detection - W Lee (Editor), L. Me
(Editor), A Wespi (Editor) - |SBN: 3-5404-2702-3

[11] A Visual Mathematical Mdel for Intrusion Detection - Geg Vert, Deborah
A Frincke, Jesse C McConnel — Center for Secure and Dependable
Sof tware — University of Idaho

[12] A Franework for Cooperative Intrusion Detection — Deborah Frincke, Don
Tobin, Jesse McConnel, Jam e Marconi, Dean Polla - Center for Secure and
Dependabl e Software — University of |daho

[13] Model ing and Sinulation of Intrusion Ri sk — Renaud Bi dou — I ntexxia

[14] The IEEE Standard Dictionary of Electrical and Electrics Terns — John
Radatz - | EEE

[15] Fundanent al s of Conputer Security Technol ogy — Edward G Anobroso

[16] A Common Language for Computer Security Incidents - John D Howar d,
Thomas A Longstaff — Sandia Report — SAND98- 8667

[17] Renote Network Monitoring Management Information Base — |ETF RFC 1757 -
S. Wl dbusser - Carnegie Mellon University

[18] Attack trees - Bruce Schnei er — Counterpane Labs

[19] Survi vabl e Networks Systenms: An Energency Discipline — R J. Ellison,
D. A Fi sher, R C Li nger, H. F. Li pson, T. Longstaff, N. R
Mead — CERT Technical Report - Carnegie Mellon University

[20] I ncident Reporting uidelines — CERT Coordination Center - Carnegie
Mel I on University

[21] Intrusion Detection Message Exchange Format Data Mdel and Extensible
Mar kup Language (XM.) Docunent Type Definition — D Curry, H Debar -
| ETF I ntrusion Detection Wrking G oup

[22] Assi gned Numbers - RFC 1700 — J. Reynolds, J. Postel - Internet Wbrking
G oup

[23] Anal ysis Techniques for Detecting Coordinated Attack and Probes — John
G een, David Marchette, Stephen Northcutt, Bill Ral ph

[24] A Pattern Matching Based Filter for Audit Reduction and Fast Detection of
Potential Intrusions — Josué Kuri, Gonzalo Navarro, Ludovic M, Laurent
Heye

