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Abstract 
A Security Operation Center (SOC) is made up of five distinct modules: event 
generators, event collectors, message database, analysis engines and reaction 
management software.   The main problem encountered when building a SOC is the 
integration of all these modules, usually built as autonomous parts, while 
matching availability, integrity and security of data and their transmission 
channels.   In this paper we will discuss the functional architecture needed 
to integrate those modules.  Chapter one will introduce the concepts behind 
each module and briefly describe common problems encountered with each of 
them.  In chapter two we will design the global architecture of the SOC. We 
will then focus on collection & analysis of data generated by sensors in 
chapters three and four.  A short conclusion will describe further research & 
analysis to be performed in the field of SOC design. 
 
1 SOC Modules  
Security Operation Center is a generic term describing part or all of a 
platform whose purpose is to provide detection and reaction services to 
security incidents.  According to this definition we can distinguish five 
operations to be performed by a SOC: security event generation, collection, 
storage, analysis and reaction. 
 
For ease we will start with the revolutionary definition of “boxes” given in 
[1]. 
- E Boxes: Events generators 
- D Boxes: Events databases 
- R Boxes: Events reaction 
We will then slightly alter the definition for A Boxes (given as “receive 
reports & perform analysis”) to only “perform analysis”, leaving the “collect 
operation” of data from E Boxes to specific C Boxes. 
- A Boxes: Events analysis 
- C Boxes: Event collection & Formatting 
Another box type will be defined as we will need to manage knowledge of 
protected platform characteristics, as well as the vulnerability and intrusion 
signature database. 
- K Boxes: Knowledge base 
 
As it can be easily imagined, each box describes a functional group of 
“modules” performing specific operations.  As an example an “E Box” may be a 
group of applications generating system events through the standard syslog 
interface of the OS on which they run.  .   It could also be a pool of Network 
IDS’s.  In the preceding examples, modules would be respectively the 
applications and Network IDS’s.     
 
From a macro point of view boxes would operate as described in Figure 1. 
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Figure 1: Boxes macro architecture 

 
Beside the obvious problem of data interchange format between modules, each 
module type has its own limitations which we will describe hereafter: 
 
E Boxes 
E Boxes are responsible for event generation.  We can distinguish two main 
families of such Boxes: event based data generators (ie.  sensors), which 
generate events according to a specific operation performed on the OS, 
applications or over the network, and status based data generators (ie.  
Pollers), which generate an event according to the reaction to a external 
stimulus such as ping, data integrity checking or daemon status check. 
 
1.1.1 Sensors 
The most well known type of sensors are IDS’s, be they host based or network 
based.  We can also add to this category virtually any filtering system 
(network, application or user based) providing logging, ie.  firewalls, 
routers with ACLs, switches and Wireless HUBs implementing MAC address 
restriction, RADIUS servers, SNMP stacks, etc.  In the extreme, honeypots and 
network sniffers are also to be considered as sensors.  In the latter case, 
each packet sniffed would generate an event! 
 
Each sensor is to be considered as an autonomous agent running in a hostile 
environment and, matching characteristics given in [2],: run continually, be 
fault tolerant, resist subversion, impose a minimal overhead, be configurable 
& adaptable, be scalable, provides graceful degradation of service and allow 
dynamic reconfiguration. 



 
However, bypassing and confusing techniques exists for each of them as 
described in [3] and [4]. 
 
What is more, Host Based IDS’s are still at an early stage of standardization 
[5][6] as collection of data from multiple sources (mainly OS calls and 
application specific logging) and with different level of detail, is highly 
specific to each developers’ sensitivity to security concerns...   
 
1.1.2 Pollers 
Pollers are a specific type of event generators.  Their function is to 
generate an event when a specific state is detected on a third-party system.  
The most simple analogy is to be made with Network Management Systems.  In 
this case, a polling station checks systems status (via ping, snmp for 
example).  If a system appears to be down, the polling station generates an 
alert to the Management Station. 
 
In a security specific context, pollers will be mainly responsible for 
checking service status (in order to detect DoS) and data integrity (usually 
web page content).   
 
The main limitation encountered with pollers is performance, as it may be 
difficult to setup systems that would be able to poll hundreds of targets at 
short intervals whilst non-disturbing the managed systems operations.  
Continuous polling may impact system operations, leading, in the extreme, to 
CPU (or, in the worst case, network) resource starvation.    
 
1.2 C Boxes and D Boxes 
Collection boxes’ purpose is to gather information from different sensors and 
translate them into a standard format, in order to have an homogeneous base of 
messages. 
 
Once again availability and scalability of these boxes appears to be a major 
concern.  However, such aspects can be managed in a way similar to that used 
for any server-side service, using clusters, high availability and load 
balanced dedicated hardware / appliances, etc. 
 
The standard formatting of collected data (the second point described above), 
appears far more theoretical and still subject to controversy around the 
security community.  The IETF [define?] is working on standards for message 
formatting as well as transmission protocols [7]. However, unofficial 
extensions seems already necessary for correlation purposes [8] as well as 
distributed sensor management [9]...   
 
D Boxes are the more standard modules we find in a SOC architecture.  They are 
databases.   
 
The only SOC specific operation to be performed by this Box type is a basic 
level of correlation in order to identify and fuse duplicates either from the 
same or different sources.   
 
Beside classical concerns regarding database availability, integrity and 
confidentiality, D Boxes will mainly face the problem of performance as 
sensors may generate dozens of messages each second.  Those messages will have 
to be stored, processed and analyzed as quickly as possible, in order to allow 
a timely reaction to intrusion attempts or success. 
 



C and D Boxes concepts will be detailed in Chapter 3. 
 
1.3 A Boxes and K Boxes 
Those modules are responsible for the analysis of events stored in D Boxes.  
They are to perform various operations in order to provide qualified alert 
messages.   
 
This kind of operation is probably the one on which most current researche 
focuses [10], be it in terms of correlation algorithms, false-positive message 
detection, mathematical representation [11] or distributed operating [12].   
 
However, the diversity of such research and the early stage of implementations 
(mostly limited to proof of concept) lead to the design of a module that is 
the most proprietary and non-standard part of the SOC.  We will thus present 
an approach dealing with the structural analysis of intrusion attempts, as 
well as behavior analysis i.e.  alignment with the security policy. 
 
It is evident that the analysis process needs inputs from a database in which 
intrusion path characteristics, protected system model and security policy are 
stored.  This is the very purpose of K Boxes.   
   
A and K Boxes concepts will be detailed in chapter 4. 
 
1.4 R Boxes 
R Box is a generic term used to define the ensemble of reaction and reporting 
tools used to react against the offending events taking place on or within the 
supervised systems. 
 
Experience shows that this is a very subjective concept, as it involves GUI 
ergonomics, security policy enforcement strategy, legal constraints and 
contractual SLAs by the supervising team towards the client. 
 
These subjective-lead constraints make it virtually impossible to define 
anything else than advice and best practice based on real-life experiences 
over time.  .  However, the importance of R Boxes should not be under 
estimated, as an intrusion attempt may well be perfectly analyzed and 
qualified but the whole operations would be rendered useless if no appropriate 
reaction could be launched within the appropriate delay.   The only possible 
reaction would then be the infamous “post-mortem analysis”... 



 
2 SOC global architecture 
 
The SOC global architecture implements the different box types defined in the 
preceding chapter.  However, beside the pure technical aspects involved in 
such an implementation, it is necessary to consider the supervision of an IT 
infrastructure as a full operational project.  We will thus follow the 
functional steps of such a project in order to describe both the purpose and 
the concepts of selected parts of the architecture described in figure 2. 
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Figure 2: SOC Architecture 

 
 
2.1 Data acquisition 
Before setting up sensors and designing any correlation or analysis rule, it 
is necessary to evaluate the overall security level of the IT infrastructure 
to be supervised.  This will make it possible to determine if an intrusion 
path may effectively lead to an intrusion on the target system and the 
criticity associated to such an intrusion attempt. 
 
Another point to be defined is the security policy, mostly in terms of access 
rights, permitted operations, etc. 
 
2.1.1 Technical and organizational inventory 



Security level evaluation can be divided into two parts: vulnerability 
assessment and system criticity.  This data should be stored in a specific 
module of the Knowledge Base: the Client Configuration Record (CCR). 
 
Acquisition of this data may be performed in two different ways, the Black Box 
approach and the White Box approach.  The former is a typical output from a 
blind penetration testing process.  Such a process is widely implemented and 
quickly provides results.  However, the latter approach, as described in [13], 
seems more appropriate to handle exhaustive inventory of supervised systems 
and provide intrusion path generation.   
 
System criticity is to be defined according to the relative impact that an 
intrusion can have for each type of consequence.  .  As such an approach is 
very subjective, the work must be performed using a standard method for attack 
taxonomy [14] and classification.  However the lack of definitions (be they a 
list of terms or matrices-based) that meet the six characteristics of an 
acceptable taxonomy [15], enforces an arbitrary choice.  It is then possible 
to either use a specific definition or, to rely on an external source such as 
“unauthorized results” defined in [16].   
 
2.1.2 Vulnerability database 
The vulnerability database holds information about security breaches and 
insecure behavior that would either impact the overall security level or that 
could be exploited by an attacker in order to perform an intrusion.  The 
database format must make it possible to include the following types of 
vulnerabilities. 
 
- structural vulnerabilities, ie.  vulnerabilities internal to a specific 
software such as a buffer overflow, format string, race conditions, etc.  This 
part of the database is obviously the easiest to implement, feed and maintain.  
The majority of these processes can be scripted, as information is widely 
available from public sources such as public mailing lists, software editor 
advisories and web sites.  However a validation and correlation step (if 
multiple sources are used) should be mandatory and performed by a expert team. 
 
- functional vulnerabilities, depending on configuration, operational 
behavior, users, etc.  These vulnerabilities differ from the previous ones as 
they deeply depend on the environment in which they live.  As an example, an 
NFS mount should be considered a functional vulnerability given that an 
intruder can get into an account/host allowing them to mount the file system.  
Therefore, it will be assumed that many such vulnerabilities are present on 
systems but may be considered as “inactive” as long as at least one of the 
needed conditions is not satisfied.  The hardest part is the definition / 
formatting of such vulnerabilities and the feeding of the database.  The need 
for expert teams in each field (OS specific, applications, network, etc.) is 
obvious.     
 
- topology-based vulnerabilities, including networking impact on intrusions 
and their consequences.  This part of the database includes network-based 
vulnerabilities (sniffing, spoofing, etc.) as well as the impact of filters on 
the path to an intrusion.   Such vulnerabilities cannot fit into a 
vulnerability database unless it supports a minimum of topology modeling. 
 
2.1.3 Security policy 
The next step of the supervised system inventory is an organizational one and, 
more specifically, a review of security policy aspects that would impact 
either event generation and / or the reaction-reporting processes. 



 
It is clear that the two major aspects of security policy that need to be 
reviewed are authorization and testing / audit procedures.  Those two aspects 
will provide information concerning behavior that sensors would detect.  
Events generated (administrator login, portscans, etc.) will then be marked as 
matching with security policy criteria.  Others will be analyzed as possible 
part of an intrusion attempt. 
 
Those pieces of information are stored in the Knowledge Base. 
 
2.1.4 Status evaluation 
The last part of the Knowledge Base is a detailed security level evaluation of 
the systems to be monitored.  The objective is to process such an evaluation 
through an analyzing engine capable of integrating the three kinds of 
vulnerabilities given in §2.1.2, as well as security policy constraints.  The 
engine should provide a list of vulnerabilities each system is exposed to, the 
relative impact of each vulnerability and intrusion paths leading to 
activation of “inactive” vulnerabilities. 
 
In order to be reliable, such an evaluation must be re-generated each time a 
new vulnerability is found or one of the monitored system is changed. 
 
2.2 Event generation, collection and storage 
E Boxes should be setup to generate as much raw information as possible.  This 
information can be sent in “real-time” to C Boxes and / or can be stored 
locally for future collection by C Boxes, behaving in the same way that an 
RMON [17] probe does. 
 
2.2.1 Exhaustivity and performances 
As described above, a maximum amount of raw information should be made 
available to C boxes.  Indeed discrimination and qualification of events will 
be made by the correlation engine, which will discard unimportant information.  
However, this theoretical point of view clearly has limitations in terms of 
performance.  If such an approach can reasonably be implemented for IDS 
systems, it quickly appears to be unacceptable in the case of OS events as 
well as those of most applications.   Collection of each html access log for a 
large web farm is one of the most clear examples of such a limitation...      
 
It is thus necessary to pre-filter information at the source, ie.  on the E 
Box.  Such a filter will drastically reduce the amount of data collected.  
However, applying a filter BEFORE generating events means that a first 
qualification is performed.  This qualification may be driven by two factors. 
 
- structural specifications; in this case some event will not be generated as 
they concern components (hardware, OS, applications, etc.) that are not 
present on the supervised system.  This kind of filter is typically set on 
IDS’s and firewalls / filtering equipments. 
 
- security policy pre-filters; those filters are set in order not to generate 
events as they comply with the security policy.  As an example “su –“ command 
could be allowed to a user within a specific time range, or a portscan 
initiated from a specific IP address, etc. 
 
Pre-filters significantly reduce resources needed by collectors, however they 
have two main drawbacks. 
 



The first is the difficulty to maintain such distributed filters.  Rigorous 
change management procedures must be put in place in order to make sure that 
any change on the supervised systems or the security policy will be reported 
to the relevant pre-filter.  What is more, most of those pre-filters are set 
at the application level, therefore using heterogeneous configuration files 
and thus increasing the complexity of management. 
 
The second one is the lack of exhaustivity concerning security related events 
on the systems.  If this makes statistics far less reliable, it also may make 
things harder for post-mortem analysis. 
 
 
2.2.2 Collection and storage 
The main operations performed by collectors are the reception of raw messages 
through different protocols and source type identification / formatting.  Once 
a message is formatted, it is stored into an event database.   Performances 
and availability issues naturally imply the design of a scalable architecture 
which allows large distribution of collectors and databases around a network. 
 
Collection and storage will be detailed in chapter 3. 
 
2.3 Data analysis and reporting 
 
2.3.1 Structural and behavior-lead alerts 
The main operations performed that generate alerts are the following: 
correlation, structural analysis, intrusion path analysis and behavior 
analysis. 
 
Correlation is a stand-alone operation leading to the creation of contexts 
against which further analysis will be made, in order to check if they match  
the characteristics of an intrusion attempt. 
 
Structural analysis may be compared to an advanced pattern matching process, 
used to determine if events stored within a certain context lead to a known 
intrusion path (or attack tree [18]).  Intrusion path analysis is the next 
step whose output will provide information about the exposure of the target 
system to the intrusion attempt detected.  Then, the behavior analysis will 
integrate elements from the security policy in order to determine if the 
intrusion attempt is allowed or not. 
 
The purpose of such operations is to generate alerts that not only match the 
structural path of intrusion (ie.  scan, fingerprinting, exploiting, 
backdooring & cleaning), but also take care of the security policy defined, as 
well as criticity of targets systems. 
 
Data analysis will be detailed in chapter 4. 
 
2.3.2 Interfaces 
Two kind of interfaces are made available: The SOC console and the End-user 
portal. 
 
2.3.2.1 SOC Console 
The SOC console (R Box) is designed for internal analysis and presents mostly 
unformatted data from different parts of the K Boxes.  The three interfaces 
are: 
 



- real-time monitoring interfaces, which provide raw data from the messages 
part of the K box.  This allows basic filtering functions such as “egrep” in 
order to isolate specific messages and is used for debugging, in depth 
analysis of specific events and replay of events.    
 
- incident handling interface, is the internal engine used for generation and 
follow-up of incident tickets and reaction procedures described below.  It 
provides qualified alert information as well as numerous debugging data and 
checkpoints.  It is the more complex interface, as it must fit either with 
operational performance, ergonomics and advanced filters or, research and 
identification functions.  Such an interface is the very corner-stone of a 
timely and appropriate human reaction to intrusions. 
 
- statistical analysis interface, provides raw data of security activity 
statistics over short, medium and long term periods.  This is mainly used as 
an under-layer for graphical representation. 
 
2.3.2.2 End-user portal 
The end-user portal provides formatted data of activity.   It is designed in 
order to provide multi-level reporting, for targets ranging from security 
engineers to high-level management through Security Officers.  It is divided 
into three main parts: 
 
- permanent risk evaluation interface, gives information about the current 
security level of supervised systems configuration and software versions.   It 
provides information on the overall security level, vulnerability  
characteristics and criticity, intrusion scenarios and patch or configuration 
details.   
 
- security activity, is a mid-term to long-term reporting, providing macro 
data about intrusion types, frequency, sources and consequences on the 
supervised system.  At a lower level, it is to be used in order to determine 
trends and identify specific items such as a recurring attack sources or 
mostly targeted services to watch for. 
 
- system status, which is the “pseudo real-time” interface for end-user, 
allowing a close follow-up of open incidents, systems under attack and 
intrusion paths activated by intruders.  It also provides information about 
the reaction and escalation procedure currently occurring in order to 
circumscribe the attack. 
 
2.3.3 Reaction and escalation procedures 
Eventually, reacting appropriately to an attack is mostly a question of 
organization and procedures to be applied by the incident response teams [19].  
Reaction ranges from passive monitoring for further information through to 
target system emergency halt through CERT incident reporting [20].  Of course, 
appropriate reaction should be determined before an attack takes place and 
procedures must be validated then securely (mainly in terms of integrity) 
stored and made accessible to supervision teams. 
 
In simple terms, a certain level of escalation must be defined in order to 
ensure quick and effective reaction, in parallel with the use of appropriate 
human resources.  Escalation procedures are given in figure 3.  Another aspect 
to be specified is the delay, defined as t1 in the figure above, in which the 
reaction procedure must be launched, according to attack criticity.  Once this 
delay is exhausted, escalation to the next (upper) level should be automatic. 
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Figure 3: Escalation Procedure 

 
As we can see three escalation levels have been defined: 
 



- the first level should be what we refer to as agents, i.e.  mid-technical 
level staff, which are able to understand events generated by A Boxes as well 
as the reaction procedure to apply (this is necessary as it is important to be 
able to know when the application of such a procedure failed).  Agents 
escalate incidents to level two, if the event does not match “known events” or 
“pre-defined reaction” criteria or if the time limit (t1) is reached depending 
upon the incident criticity. 
 
- the second level should be a team of technical experts.  These experts are 
responsible for the analysis of intrusion events that have not been defined a 
priori.  Their priority is to qualify events with the help of SOC console 
interfaces (cf.  §2.3.2.1) and provide a workaround to be applied by level one 
agents, pending further research or permanent solutions. 
 
- the third level should be a “laboratory” in which suspicious packets, system 
operations and so on will be re-played, in order to determine the nature of 
the unknown intrusion and provide a fully qualified reaction procedure.  The 
lab will also be responsible for contacting vendors of OS, applications, 
hardware, etc.  for patch design and / or their application. 

 



 
3 Collection and storage 
 
3.1 Data collection 
Collecting data from heterogeneous sources implies the setup of two kinds of 
agents: protocol and application.  The former collect information from E 
Boxes, the latter parses information for storage in a “pseudo-standard” 
format.  Those two modules are connected by a dispatcher.  Such an 
architecture allows high-availability and load-balancing systems to be set at 
any level into the architecture. 
 
Figure 4 shows some architecture examples, based on the details provided 
below. 
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Figure 4: Collection Macro Architecture Examples 



 
 
 
3.1.1 Protocol agents 
 
3.1.1.1 Basic functions 
Protocol agents are designed to receive information from specific transport 
protocols, such as syslog, snmp, smtp, html, etc.  They act like server side 
applications and their only purpose is to listen to incoming connections from 
E Boxes and make collected data available to the dispatcher (cf.  §3.1.3). 
 
The simplicity of such agents make them easy to implement and maintain.   
 
The raw format storage is usually a simple file, though direct transfer to the 
dispatcher through named pipes, sockets or shared memory ensures better 
performance. 
 
3.1.1.2 Performance and availability 
An interesting part of this approach, is the ease with which one can deploy 
farms of agents, as they are very simple applications that don not share data.   
It is thus possible, for very large systems to deploy syslog, snmp, smtp, .  
servers array, etc., which will be served by standard HA & LB equipment.  
Cluster architecture is also a possibility. 
 
The objective is to provide a scalable and available collection platform, 
whichever approach is taken. 
 
3.1.1.3 Security 
From a security point of view, the most important point is to ensure the 
integrity of data collected by agents.   This is particularly important if 
data is to be transferred on a shared or un-trusted network. 
 
Obviously, most protocols used to collect information, sit on top of the 
unreliable UDP layer.   It seems therefore necessary to encapsulate such data 
into a secure tunnel in order to ensure that data will reach the collection 
agent and that it will not be altered during transport.  This last point also 
concerns data sent over TCP (just like through smtp or http).   However, in 
order to maintain a high performance level and allow better HA and LB 
operations, it would be intelligent to perform encryption-related operations 
on dedicated equipment, on each side of the communication. 
 
3.1.2 Dispatcher and application agents 
 
3.1.2.1 The dispatcher 
The dispatcher’s purpose is to determine the source-type of an incoming event 
and then forward the original message to the appropriate application agent.  
Once again, implementation is relatively trivial, once a specific pattern has 
been found for each source-type from which the data may be received. 
 
Autonomous operations performed by the dispatcher are the following: 
 
- listen to an incoming channel from protocol agents, such as socket, named 
pipe, system V message queue, etc. 
 
- check pattern matching against a patterns database that should be pre-loaded 
in memory for performances considerations.  This database contains patterns 
specific to each couple (E Box type, Xmit protocol), as numerous event 



generators use different messages formats depending on the transmission 
protocol. 
 
- send the original message to an E Box specific application agent through any 
suitable outgoing channel. 
 
3.1.2.2 Application agents 
Application agents are specific to each (E Box, Xmit protocol) couple.  They  
perform formatting of messages so that they match with the generic model of 
the message database. 
 
Autonomous operations performed by application agents are:  
 
- listen to an incoming channel from dispatchers, such as socket, named pipe, 
system V message queue etc. 
 
- parse the original message into standard fields. 
 
- transmit the formatted message to corresponding D Boxes.  Once again any 
kind of channel can be used, depending on the D Box nature (database, chained 
pointers, etc.). 
 
3.1.2.3 Dispatchers and application agents merging 
 
, As fully distributed architecture theoretically appears to be the ultimate 
solution for scalability and high-availability, some implementations may need 
redundant operations to perform functions of dispatchers and application 
agents. 
 
------------------------------------------------------------------------------ 
As an example, based on a regexp parsing in perl, the following operation 
would be performed by the dispatcher in order to identify a Snort 1.8.x alert 
in syslog format: 
 
if($line =~ /.*snort: \[\d+:\d+:\d+\] .*) {  

send_to_snort_1.8_syslog_agent($line)  
} 
 
and the application agent would perform the following operation: 
 
if($line =~ /.*\[\d+:\d+:\d+\] (.*) \[Classification: (.*)\] \[Priority:.*\]: 
\{(.*)\} (.*) -> (.*)/) { 
  # fill formatted messages fields cf.  §3.2 
  $msgtype = “Snort 1.8 – Alert”; 
  $proto = getprotobyname($3); 
  $src = $4; 
  $dst = $5; 
  $intrusion_type = $intrusion_type[SnortIntrusionType($2)]; 
  $info = $1; 
 }  
 
It appears that these two operations overlap and that, in the case of a 
centralized platform, the following operation would reduce resource usage and 
provide exactly the same result: 
 
if($line =~ /.*snort: \[\d+:\d+:\d+\] (.*) \[Classification: (.*)\] 
\[Priority:.*\]: \{(.*)\} (.*) -> (.*)/) { 



  $msgtype = $msgtype[1]; 
  $proto = getprotobyname($3); 
  $src = $4; 
  $dst = $5; 
  $intrusion_type = $intrusion_type[SnortIntrusionType($2)]; 
  $info = $1; 
 } 
 
------------------------------------------------------------------------------ 
 
In some cases, it is then probable that dispatcher and application agents will 
be merged for the sake of performance and simplicity. 
 
3.2 Data formatting and storage 
 
Two kind of data have to be formatted in a “standard” manner (ie.  homogeneous 
and understandable by any module of the SOC): host entry and collected 
messages.   
 
3.2.1 Host entry 
 
3.2.1.1 Unique host identification 
The need for a standardized host data structure appears as: 
 
- sensors may transmit host information in IP address format or FQDN (Full 
Qualified Domain Name) format.   
 
- multi-homing techniques provides multiple IP address for the same physical 
system. 
 
- virtual host techniques provides multiple FQDN for the same physical system. 
 
- HA & LB systems may hide multiple systems behind a single IP address or 
FQDN. 
 
It appears that identifying a host either by its IP address or its FQDN is not 
reliable.  What is more, in the never-ending need for performance, (reverse) 
DNS lookup cannot be performed for each new (IP address) FQDN detected in 
logs. 
 
It is then necessary to rely on a third-party ID, IP address and FQDN 
independent: the host token. 
 
3.2.1.2 Host entry data structure 
 
The data structure to store host information follows the scheme given in 
Figure 5. 
 
The function and implementation of each part is trivial and should not need 
further explanation.   
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Figure 5: Host Entry Data Structure 
 

3.2.1.3 Data management and maintenance 
 
The best way to handle such data without acceding to a database or browsing a 
tree of chained structures, is to generate a hash-table holding corresponding 
host tokens.  Such a hash-table should be created in memory at system startup 
and updated each time a new address or FQDN is identified. 
 
An update of the original database should, of course, be planned in order to 
save new data.  The delay between each synchronization is to be defined 
according to performances constraints. 
 
 
3.2.2 Messages 
 
3.2.2.1 Homogeneous messages format structure 
Working on data generated by the different types of equipment, transmitted via 
different protocols requires “standard” formatting.  Although an effort has 
been made to define a worldwide standard with IDMEF [21], it appears that the 
XML bus used is too heavy and resources consuming, for our purposes of event 
correlation.  However, a separate translation process MUST be implemented for 
IDMEF compliance. 
 
Structure of a formatted message is the following 
 
Field Attributes Description 
id Unique Unique message ID 
sensor_id Not Null Unique Sensor ID 
msg_type Not Null Type of message (ipchains, snort-1.8.x-alert etc.) 
epoch_time Not Null Date in epoch format of event generation 
source  Intrusion Source Host Token 
target  Intrusion Target Host Token 
proto  Protocol number [22] 
src_port  Intrusion source port number 
tgt_port  Intrusion target port number 
info  Additional info 
int_type_id Not Null Intrusion type ID (Filter, Access etc.) 
int_id  Intrusion ID 
message Not Null Original message 

Table 1: Formatted message structure 
 



3.2.2.2 Third-party structures 
As described in Table 1, other data is involved in the creation of formatted 
messages.   Relations between each structure are given in Figure 6. 
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Figure 6: Formatted message definition structures 

 
 
Apart of the Host Table data structure described in §3.2.1, the tables 
involved in the building of a formatted message are the following: 
 
- Sensor Table, this table is designed to identify each sensor on the 
supervised system.  This sensor is given a unique ID and a sensor type.  
Additional optional data, are a host token (if the sensor is IP) and a 
description. 
 
- Sensor Type Table, this table is only designed to provide a human readable 
description of each sensor type. 



- Message Type Table, this table provides a human readable description of 
Message Type ID. 
 
- Intrusion Table, the purpose of this table is to provide matches from 
different references, to a similar attack.  As examples, we give BID (Bugtraq 
ID), CVE ID and Arachnids ID.  Others can be integrated. 
 
- Intrusion Type Table, this table defines major intrusion type families such 
as filter, scan, fingerprinting, exploit, access, etc.   
 
As for the Host Entry Table, most data involved in the building of a formatted 
message should be loaded in memory at startup and regularly synchronized. 



 
4 Correlation 
 
4.1 Overview 
 
4.1.1 Operating the correlation 
The correlation’s purpose is to analyze complex information sequences and 
produce simple, synthesized and accurate events.  In order to generate such 
qualified events, five operations are to be performed: 
 
- duplicates identification, the first, obvious, operation is to identify 
duplicates and set a specific flag in order to keep the information and 
continue without the need keep  multiple identical messages. 
 
- sequence patterns matching, is the most common operation performed by a 
correlation engine.   Its purpose is to identify a sequence of messages which 
would be characteristic of an intrusion attempt.   It makes it possible to 
identify on-going intrusion processes, as well as complex intrusion scenarios. 
 
- time pattern matching, is designed to include another important dimension in 
intrusion analysis: time.  This is mainly used for context (see below) 
management, as well as slow and distributed intrusion processes.    
 
- system exposure and criticity analysis, provides information about the 
target system’s vulnerability to detected intrusion attempts.  Indeed, it 
seems inappropriate to have a SOC generating alarms concerning an intrusion 
scenario based on a vulnerability that the target system is not exposed to.   
Another piece of information is the criticity of the intrusion i.e.  its 
overall impact on the supervised system.   This helps to manage the priorities 
in terms of reaction to multiple incidents. 
 
- security policy matching, is a behavior-based filter that eliminates 
specific events if they match security policy criteria such as administrator 
login, identification processes and authorizations / restrictions. 
 
A global overview of correlation operations is given in figure 7 below. 
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Figure 7: Main correlation operations 

 
 
4.1.2 Introduction to contexts 
The analysis defined above is based upon a specific structure called contexts.  
All correlation operations are performed against these structures.  In simple 
terms, the definition of a context is the following: a container of formatted 
data matching a common criteria. 
 



Therefore, any message stored in the formatted message database is to be part 
of one or more contexts.  Correlation operations will be done in parallel so 
that they can be run simultaneously on each context. 
 
Two kinds of context management approach can be implemented: 
 
The first one is to define independent and distinct contexts.  Each context 
will contain messages matching every criteria.   We define such an 
architecture as an array of contexts. 
 
The second approach is a hierarchical one.   Top level contexts matching a 
limited number of criteria are defined.  Then sub-contexts, based on different 
criteria, are created and so on.  This will be defined hereafter as context 
tree. 
 
As is to be expected, none of the preceding approaches meet all needs,  be 
they in terms of performance or functionality.  A mixed architecture will thus 
have to be defined. 
 
4.2 Contexts 
 
4.2.1 Context definition criteria  
Defining context criteria must be done according to security related events 
that the SOC must react to, be they distributed scanning operations, finger-
printing, massive exploit testing, account brute forcing, spamming and so on.   
 
A full functional architecture of contexts is given in figure 8 (§4.2.2.1). 
 
4.2.1.2 Source and target 
The first obvious criteria is the attacking and attacked host’s ID, which has 
to be standardized (cf.  §3.2.1).   
 
 - source, defining source as a context creation criteria allows sweeps 
detection, identification of systems used as attack relays or compromised by 
worms and targeted hack-proofing. 
 
- target, contexts created by target criteria will provide information on 
scans (be they distributed, slow or “normal”) and, should it even be noticed, 
intrusion attempts and system compromises. 
 
Two arrays of context should then be defined, one with context matching 
sources, another matching targets.  Each context of each array should then be 
considered as a top-level context for the context trees.   The criteria to be 
matched by the smallest “branches” would be target ID (for contexts created by 
the source ID match) or source ID (for contexts created by the source ID 
match). 
 
4.2.1.3 Protocol and ports 
Whilst working with trivial data, the protocols and the ports of the targeted 
systems should form the criteria for the next level of context ”branches”.  
This is mainly done in order to isolate single scanning operations from heavy 
repetitive attempts to compromise a system through a specific application.   
What is more, it helps to identify the various steps of an intrusion. 
 
Indeed one of the most common intrusion scenario, is a wide portscan sweep 
followed by fingerprinting / version identification on open ports followed by 
an exploit launched on systems believed to be vulnerable.   



 
 
4.2.1.4 Intrusion type 
In order to identify which type of message is stored, thus starting a more 
accurate analysis of messages, a next level of context generation is performed 
according to the intrusion type ID (defined in §3.2.2.2).  An example of 
intrusion type ID definition is given in table 2 below. 
 
Intrusion Type ID Description 
0 / Unknown Unknown intrusion type 
1xx - Identification Target identification 
100 / Filtered Packets filtered by firewalls, ACLs etc. 
110 / Scan Basic portscan detection 
120 / Fingerprinting Target identification 
2xx - Exploits Bulk intrusion attempts 
200 / Exploit Exploit launch detection 
3xx – Denial of Service Successful DoS attacks 
300 / Denial of Service Partial DoS attack 
310 / Denial of Service Global DoS attack 
4xx – Security Bypass Security policy bypass attempts 
400 / Spoofing IP / MAC spoofing 
410 / Content Content filtering bypass 
420 / Privileges Privilege gaining attempts 
5xx – System compromise Attempts to compromise the target system 
510 / Account Success Account access  
520 / Data Failure Access to private data attempts 
530 / Integrity System integrity compromise 

Table 2: Intrusion type ID 
 

 
4.2.1.5 Intrusion ID 
The last “branch” of contexts contains specific intrusion ID, i.e.  the 
characterization of each message.   At this level we reach the atomic (except 
for duplicates – cf.  §4.2.2.2) dimension of each message.   This field refers 
to the Intrusion Table (cf.  §3.2.2.2) and will be responsible for the link 
between the correlation engine and system status information stored in the 
Knowledge Base (cf.  figure 2 and §2.1.1). 
 
4.2.2 Contexts structure 
As any correlation operation is exclusively performed on contexts, it appears 
that their structure is probably one of the most important aspects of the SOC.   
 
4.2.2.1 Functional architecture 
The functional architecture has been described in the preceding chapter.   It 
is made up of an array of context trees.  Each tree contains 4 level of 
branches, as described in figure 8. 
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Figure 8: Contexts functional architecture 
 

 
4.2.2.2 Data structure 
In order to handle the architecture defined above, we need to implement a 
structure that will ensure proper storage and access to information.   
 
Figure 9 describes a scheme for context implementation.   As PERL natively 
implements arrays and hash-tables we will use the PERL notation.   However, 
this is not necessarily a recommended implementation. 
 
In this implementation example the following fields are defined. 
 
- start_time and stop_time, these fields are found in each branch of the 
context structure.   It provides information on time the first and last 
messages concerning a given branch (and dependent sub-branches) were 
generated. 
 
- duplicate, gives the number of duplicate messages.   Duplicate messages 
contain exactly the same information from one message to another except for 
the time information. 
 
Other fields are self-explanatory or have been explained already. 
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Figure 9: Contexts implementation scheme 

 
 
 
4.2.3 Contexts status 
Another important characteristic of context is its status.   We define three 
distinct statusesas detailed below: 
 
- active, context matches specific criteria (usually based on time but could 
be any other criteria), which could be characteristic of an on-going intrusion 
process.   Typically, such a context appears to be under a heavy load from the  
arrival of new message and its analysis by the correlation engine should be 
set to the highest priority possible. 
 
- inactive, such a context either does not match “active” criteria or did not 
receive a specific closure code.   This means that it is no longer analyzed by 
the correlation engine,  but that it can be reactivated by the next message 
matching the same context criteria.    
 
- closed, in this state a context is completed.   Any new message matching 
this context criteria will create a new context. 
 



Context status management is summarized in figure 10. 
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Figure 10: Context status management 

 
 
4.3 Analysis 
 
4.3.1 Structural analysis 
The purpose of structural analysis is to identify on going intrusion attempts, 
manage context inactivity status and context closure conditions.   In simple 
terms, structural analysis is a set of operations performed by independent 
modules on each context.   Each module is activated by a specific message and 
performs analysis using a “standard” semantic. 
 
4.3.1.1 Analysis modules structure 
The output of the analysis modules is the result of several logical operations 
between autonomous conditions against fields of contexts.   Figure 11 
describes members of such operations. 
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Figure 11: Analysis module structure 
 

 
Field conditions have the following structure: 
 

field operator <field | value> [!] 
 



It appears that the power of structural analysis relies on the number of 
operators made available.   However, the very structure of contexts provides 
embedded operations such as source, target, port correlation.   This not only 
increases the number of “native” operators but also improves significantly the 
performances of structural analysis.    
 
The ! sign indicates that the field condition is to be matched in order to 
activate the module (cf.  below)  
 
4.3.1.2 Analysis module activation 
Two kind of events can activate analysis modules: messages and time. 
 
- messages, as described above, some field conditions must be matched in order 
to activate an analysis module.   A header containing field conditions to be 
met, is then generated for each analysis module.   Given the structure of 
analysis module, it appears that the header will be a set of logical OR 
operations, whose members will be field conditions that require the least 
amount of resources to be evaluated. 
 
- time, the analysis module header may also contain timer information forcing 
the correlation to be evaluated.   This is mainly used for context closure and 
time dependent intrusions detection such as (slow) portscans, brute forcing, 
etc. 
 
4.3.2 Advanced correlation 
Advanced correlation operations are performed in order to define the criticity 
of an intrusion attempt and evaluate if such an intrusion attempt is permitted 
according to the security policy. 
 
4.3.2.1 Functional analysis 
This second correlation step is performed in order to evaluate system exposure 
to the intrusion and the overall impact of such an intrusion on the supervised 
system. 
 
Once the structural analysis has provided information about an occurring 
intrusion attempt, a request is made to Customer Status part of the K Box.  
This request contains the Intrusion ID and the Host token of the target.  The 
response provides the following pieces of information: 
 
- criticity, is a value from an arbitrary scale, typically info-warning-minor-
major-critical based. 
 
- closure code, if the context is to be closed, usually because the target is 
not impacted by the intrusion attempt.   
 
- message, a new formatted message to be appended to the actual context, that 
may activate additional analysis modules. 
 
4.3.2.2 Behavior analysis 
The purpose of this last analysis is to define if the attempts match the 
security policy.   This is mainly used to manage access to accounts but can 
also be implemented in the case of pre-programmed audits, portscans, etc..  In 
such a situation a closure code is sent to the context. 
 
Technically, this analysis is performed in exactly the same way as structural 
analysis i.e.  via specific modules whose structure is loaded from the 
security policy part of the K Box. 



5 Conclusion 
 
The complexity of SOC setup is more a question of the integration than the 
implementation of individual modules.   The emerging standards should provide 
help in reducing gaps between theoretical approaches, proprietary 
implementations and stand-alone systems. 
 
In the meantime, intrusions are clearly taking place and there is thus a need 
for operational supervision systems today.   Experience shows that a pragmatic 
approach needs to be taken in order to implement a  professional SOC that can 
provide reliable results.    The theory described above forms the framework 
for deploying such a SOC. 
 
 
 
 
 
 
 



 
Glossary 
 
A Box: Events analysis module 
C Box: Event collection & Formatting module 
CCR: Client Configuration Record 
D Box: Events databases module 
E Box: Events generators module 
FQDN: Full Qualified Domain Name 
HA: High-Availability 
K Box: Knowledge base 
LB: Load-Balancing 
R Box: Events reaction module 
SOC: Security Operation Center 
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