
Security Operation Center Concepts & Implementation
Renaud Bidou

renaud.bidou@iv2-technologies.com

Abstract
A Security Operation Center (SOC) is made up of five distinct modules: event
generators, event collectors, message database, analysis engines and reaction
management software. The main problem encountered when building a SOC is the
integration of all these modules, usually built as autonomous parts, while
matching availability, integrity and security of data and their transmission
channels. In this paper we will discuss the functional architecture needed
to integrate those modules. Chapter one will introduce the concepts behind
each module and briefly describe common problems encountered with each of
them. In chapter two we will design the global architecture of the SOC. We
will then focus on collection & analysis of data generated by sensors in
chapters three and four. A short conclusion will describe further research &
analysis to be performed in the field of SOC design.

1 SOC Modules
Security Operation Center is a generic term describing part or all of a
platform whose purpose is to provide detection and reaction services to
security incidents. According to this definition we can distinguish five
operations to be performed by a SOC: security event generation, collection,
storage, analysis and reaction.

For ease we will start with the revolutionary definition of “boxes” given in
[1].
- E Boxes: Events generators
- D Boxes: Events databases
- R Boxes: Events reaction
We will then slightly alter the definition for A Boxes (given as “receive
reports & perform analysis”) to only “perform analysis”, leaving the “collect
operation” of data from E Boxes to specific C Boxes.
- A Boxes: Events analysis
- C Boxes: Event collection & Formatting
Another box type will be defined as we will need to manage knowledge of
protected platform characteristics, as well as the vulnerability and intrusion
signature database.
- K Boxes: Knowledge base

As it can be easily imagined, each box describes a functional group of
“modules” performing specific operations. As an example an “E Box” may be a
group of applications generating system events through the standard syslog
interface of the OS on which they run. . It could also be a pool of Network
IDS’s. In the preceding examples, modules would be respectively the
applications and Network IDS’s.

From a macro point of view boxes would operate as described in Figure 1.

E Box

C Box

D Box

A Box

E Box E Box E Box E Box

C Box

E Boxes

C Boxes

D Box

A Box

R Box
R Box

event generators : sensors & pollers

collection boxes

formated messages database

incident analysis

reaction and reporting

K Box
K Box
knowledge base

+

Figure 1: Boxes macro architecture

Beside the obvious problem of data interchange format between modules, each
module type has its own limitations which we will describe hereafter:

E Boxes
E Boxes are responsible for event generation. We can distinguish two main
families of such Boxes: event based data generators (ie. sensors), which
generate events according to a specific operation performed on the OS,
applications or over the network, and status based data generators (ie.
Pollers), which generate an event according to the reaction to a external
stimulus such as ping, data integrity checking or daemon status check.

1.1.1 Sensors
The most well known type of sensors are IDS’s, be they host based or network
based. We can also add to this category virtually any filtering system
(network, application or user based) providing logging, ie. firewalls,
routers with ACLs, switches and Wireless HUBs implementing MAC address
restriction, RADIUS servers, SNMP stacks, etc. In the extreme, honeypots and
network sniffers are also to be considered as sensors. In the latter case,
each packet sniffed would generate an event!

Each sensor is to be considered as an autonomous agent running in a hostile
environment and, matching characteristics given in [2],: run continually, be
fault tolerant, resist subversion, impose a minimal overhead, be configurable
& adaptable, be scalable, provides graceful degradation of service and allow
dynamic reconfiguration.

However, bypassing and confusing techniques exists for each of them as
described in [3] and [4].

What is more, Host Based IDS’s are still at an early stage of standardization
[5][6] as collection of data from multiple sources (mainly OS calls and
application specific logging) and with different level of detail, is highly
specific to each developers’ sensitivity to security concerns...

1.1.2 Pollers
Pollers are a specific type of event generators. Their function is to
generate an event when a specific state is detected on a third-party system.
The most simple analogy is to be made with Network Management Systems. In
this case, a polling station checks systems status (via ping, snmp for
example). If a system appears to be down, the polling station generates an
alert to the Management Station.

In a security specific context, pollers will be mainly responsible for
checking service status (in order to detect DoS) and data integrity (usually
web page content).

The main limitation encountered with pollers is performance, as it may be
difficult to setup systems that would be able to poll hundreds of targets at
short intervals whilst non-disturbing the managed systems operations.
Continuous polling may impact system operations, leading, in the extreme, to
CPU (or, in the worst case, network) resource starvation.

1.2 C Boxes and D Boxes
Collection boxes’ purpose is to gather information from different sensors and
translate them into a standard format, in order to have an homogeneous base of
messages.

Once again availability and scalability of these boxes appears to be a major
concern. However, such aspects can be managed in a way similar to that used
for any server-side service, using clusters, high availability and load
balanced dedicated hardware / appliances, etc.

The standard formatting of collected data (the second point described above),
appears far more theoretical and still subject to controversy around the
security community. The IETF [define?] is working on standards for message
formatting as well as transmission protocols [7]. However, unofficial
extensions seems already necessary for correlation purposes [8] as well as
distributed sensor management [9]...

D Boxes are the more standard modules we find in a SOC architecture. They are
databases.

The only SOC specific operation to be performed by this Box type is a basic
level of correlation in order to identify and fuse duplicates either from the
same or different sources.

Beside classical concerns regarding database availability, integrity and
confidentiality, D Boxes will mainly face the problem of performance as
sensors may generate dozens of messages each second. Those messages will have
to be stored, processed and analyzed as quickly as possible, in order to allow
a timely reaction to intrusion attempts or success.

C and D Boxes concepts will be detailed in Chapter 3.

1.3 A Boxes and K Boxes
Those modules are responsible for the analysis of events stored in D Boxes.
They are to perform various operations in order to provide qualified alert
messages.

This kind of operation is probably the one on which most current researche
focuses [10], be it in terms of correlation algorithms, false-positive message
detection, mathematical representation [11] or distributed operating [12].

However, the diversity of such research and the early stage of implementations
(mostly limited to proof of concept) lead to the design of a module that is
the most proprietary and non-standard part of the SOC. We will thus present
an approach dealing with the structural analysis of intrusion attempts, as
well as behavior analysis i.e. alignment with the security policy.

It is evident that the analysis process needs inputs from a database in which
intrusion path characteristics, protected system model and security policy are
stored. This is the very purpose of K Boxes.

A and K Boxes concepts will be detailed in chapter 4.

1.4 R Boxes
R Box is a generic term used to define the ensemble of reaction and reporting
tools used to react against the offending events taking place on or within the
supervised systems.

Experience shows that this is a very subjective concept, as it involves GUI
ergonomics, security policy enforcement strategy, legal constraints and
contractual SLAs by the supervising team towards the client.

These subjective-lead constraints make it virtually impossible to define
anything else than advice and best practice based on real-life experiences
over time. . However, the importance of R Boxes should not be under
estimated, as an intrusion attempt may well be perfectly analyzed and
qualified but the whole operations would be rendered useless if no appropriate
reaction could be launched within the appropriate delay. The only possible
reaction would then be the infamous “post-mortem analysis”...

2 SOC global architecture

The SOC global architecture implements the different box types defined in the
preceding chapter. However, beside the pure technical aspects involved in
such an implementation, it is necessary to consider the supervision of an IT
infrastructure as a full operational project. We will thus follow the
functional steps of such a project in order to describe both the purpose and
the concepts of selected parts of the architecture described in figure 2.

Messages
Correlation

Stats

Permanent Risk Evaluation

Client System
Modelisation

OS

Host based IDS

Applications

Firewall alerts

Network IDS

Integrity Checking

Network equipment

Alerts

Monitored System

Incident
Handling

Client
Configuration

Record

Security Policy

Customer
Status

Vulnerability
Database

Analysis

.........

A Box
(Correlation
Engine)

E Box (Event Generators)

Status
Integrity

C Box (Collection & Formating Modules)

K Box (Knowledge Base)

SNMP

syslog

Proprietary

SMTP

HTTP / XML

.........

Linux

Windows 2k / XP

Cisco Pix

Firewall-1

Oracle

Apache

IIS

.........

D
I
S
P
A
T
C
H
E
R

Tripwire

ISS

Snort

Events

D Box (Local events database)

Real-time
Monitoring

Statistical
Analysis

System Status

Security Activity

R'' Box (Customer Portal)R' Box (SOC Console)

D
is

tr
ib

ut
ed

 A
rc

hi
te

cu
re

D
is

tr
ib

ut
ed

 A
rc

hi
te

cu
re

Polling

Figure 2: SOC Architecture

2.1 Data acquisition
Before setting up sensors and designing any correlation or analysis rule, it
is necessary to evaluate the overall security level of the IT infrastructure
to be supervised. This will make it possible to determine if an intrusion
path may effectively lead to an intrusion on the target system and the
criticity associated to such an intrusion attempt.

Another point to be defined is the security policy, mostly in terms of access
rights, permitted operations, etc.

2.1.1 Technical and organizational inventory

Security level evaluation can be divided into two parts: vulnerability
assessment and system criticity. This data should be stored in a specific
module of the Knowledge Base: the Client Configuration Record (CCR).

Acquisition of this data may be performed in two different ways, the Black Box
approach and the White Box approach. The former is a typical output from a
blind penetration testing process. Such a process is widely implemented and
quickly provides results. However, the latter approach, as described in [13],
seems more appropriate to handle exhaustive inventory of supervised systems
and provide intrusion path generation.

System criticity is to be defined according to the relative impact that an
intrusion can have for each type of consequence. . As such an approach is
very subjective, the work must be performed using a standard method for attack
taxonomy [14] and classification. However the lack of definitions (be they a
list of terms or matrices-based) that meet the six characteristics of an
acceptable taxonomy [15], enforces an arbitrary choice. It is then possible
to either use a specific definition or, to rely on an external source such as
“unauthorized results” defined in [16].

2.1.2 Vulnerability database
The vulnerability database holds information about security breaches and
insecure behavior that would either impact the overall security level or that
could be exploited by an attacker in order to perform an intrusion. The
database format must make it possible to include the following types of
vulnerabilities.

- structural vulnerabilities, ie. vulnerabilities internal to a specific
software such as a buffer overflow, format string, race conditions, etc. This
part of the database is obviously the easiest to implement, feed and maintain.
The majority of these processes can be scripted, as information is widely
available from public sources such as public mailing lists, software editor
advisories and web sites. However a validation and correlation step (if
multiple sources are used) should be mandatory and performed by a expert team.

- functional vulnerabilities, depending on configuration, operational
behavior, users, etc. These vulnerabilities differ from the previous ones as
they deeply depend on the environment in which they live. As an example, an
NFS mount should be considered a functional vulnerability given that an
intruder can get into an account/host allowing them to mount the file system.
Therefore, it will be assumed that many such vulnerabilities are present on
systems but may be considered as “inactive” as long as at least one of the
needed conditions is not satisfied. The hardest part is the definition /
formatting of such vulnerabilities and the feeding of the database. The need
for expert teams in each field (OS specific, applications, network, etc.) is
obvious.

- topology-based vulnerabilities, including networking impact on intrusions
and their consequences. This part of the database includes network-based
vulnerabilities (sniffing, spoofing, etc.) as well as the impact of filters on
the path to an intrusion. Such vulnerabilities cannot fit into a
vulnerability database unless it supports a minimum of topology modeling.

2.1.3 Security policy
The next step of the supervised system inventory is an organizational one and,
more specifically, a review of security policy aspects that would impact
either event generation and / or the reaction-reporting processes.

It is clear that the two major aspects of security policy that need to be
reviewed are authorization and testing / audit procedures. Those two aspects
will provide information concerning behavior that sensors would detect.
Events generated (administrator login, portscans, etc.) will then be marked as
matching with security policy criteria. Others will be analyzed as possible
part of an intrusion attempt.

Those pieces of information are stored in the Knowledge Base.

2.1.4 Status evaluation
The last part of the Knowledge Base is a detailed security level evaluation of
the systems to be monitored. The objective is to process such an evaluation
through an analyzing engine capable of integrating the three kinds of
vulnerabilities given in §2.1.2, as well as security policy constraints. The
engine should provide a list of vulnerabilities each system is exposed to, the
relative impact of each vulnerability and intrusion paths leading to
activation of “inactive” vulnerabilities.

In order to be reliable, such an evaluation must be re-generated each time a
new vulnerability is found or one of the monitored system is changed.

2.2 Event generation, collection and storage
E Boxes should be setup to generate as much raw information as possible. This
information can be sent in “real-time” to C Boxes and / or can be stored
locally for future collection by C Boxes, behaving in the same way that an
RMON [17] probe does.

2.2.1 Exhaustivity and performances
As described above, a maximum amount of raw information should be made
available to C boxes. Indeed discrimination and qualification of events will
be made by the correlation engine, which will discard unimportant information.
However, this theoretical point of view clearly has limitations in terms of
performance. If such an approach can reasonably be implemented for IDS
systems, it quickly appears to be unacceptable in the case of OS events as
well as those of most applications. Collection of each html access log for a
large web farm is one of the most clear examples of such a limitation...

It is thus necessary to pre-filter information at the source, ie. on the E
Box. Such a filter will drastically reduce the amount of data collected.
However, applying a filter BEFORE generating events means that a first
qualification is performed. This qualification may be driven by two factors.

- structural specifications; in this case some event will not be generated as
they concern components (hardware, OS, applications, etc.) that are not
present on the supervised system. This kind of filter is typically set on
IDS’s and firewalls / filtering equipments.

- security policy pre-filters; those filters are set in order not to generate
events as they comply with the security policy. As an example “su –“ command
could be allowed to a user within a specific time range, or a portscan
initiated from a specific IP address, etc.

Pre-filters significantly reduce resources needed by collectors, however they
have two main drawbacks.

The first is the difficulty to maintain such distributed filters. Rigorous
change management procedures must be put in place in order to make sure that
any change on the supervised systems or the security policy will be reported
to the relevant pre-filter. What is more, most of those pre-filters are set
at the application level, therefore using heterogeneous configuration files
and thus increasing the complexity of management.

The second one is the lack of exhaustivity concerning security related events
on the systems. If this makes statistics far less reliable, it also may make
things harder for post-mortem analysis.

2.2.2 Collection and storage
The main operations performed by collectors are the reception of raw messages
through different protocols and source type identification / formatting. Once
a message is formatted, it is stored into an event database. Performances
and availability issues naturally imply the design of a scalable architecture
which allows large distribution of collectors and databases around a network.

Collection and storage will be detailed in chapter 3.

2.3 Data analysis and reporting

2.3.1 Structural and behavior-lead alerts
The main operations performed that generate alerts are the following:
correlation, structural analysis, intrusion path analysis and behavior
analysis.

Correlation is a stand-alone operation leading to the creation of contexts
against which further analysis will be made, in order to check if they match
the characteristics of an intrusion attempt.

Structural analysis may be compared to an advanced pattern matching process,
used to determine if events stored within a certain context lead to a known
intrusion path (or attack tree [18]). Intrusion path analysis is the next
step whose output will provide information about the exposure of the target
system to the intrusion attempt detected. Then, the behavior analysis will
integrate elements from the security policy in order to determine if the
intrusion attempt is allowed or not.

The purpose of such operations is to generate alerts that not only match the
structural path of intrusion (ie. scan, fingerprinting, exploiting,
backdooring & cleaning), but also take care of the security policy defined, as
well as criticity of targets systems.

Data analysis will be detailed in chapter 4.

2.3.2 Interfaces
Two kind of interfaces are made available: The SOC console and the End-user
portal.

2.3.2.1 SOC Console
The SOC console (R Box) is designed for internal analysis and presents mostly
unformatted data from different parts of the K Boxes. The three interfaces
are:

- real-time monitoring interfaces, which provide raw data from the messages
part of the K box. This allows basic filtering functions such as “egrep” in
order to isolate specific messages and is used for debugging, in depth
analysis of specific events and replay of events.

- incident handling interface, is the internal engine used for generation and
follow-up of incident tickets and reaction procedures described below. It
provides qualified alert information as well as numerous debugging data and
checkpoints. It is the more complex interface, as it must fit either with
operational performance, ergonomics and advanced filters or, research and
identification functions. Such an interface is the very corner-stone of a
timely and appropriate human reaction to intrusions.

- statistical analysis interface, provides raw data of security activity
statistics over short, medium and long term periods. This is mainly used as
an under-layer for graphical representation.

2.3.2.2 End-user portal
The end-user portal provides formatted data of activity. It is designed in
order to provide multi-level reporting, for targets ranging from security
engineers to high-level management through Security Officers. It is divided
into three main parts:

- permanent risk evaluation interface, gives information about the current
security level of supervised systems configuration and software versions. It
provides information on the overall security level, vulnerability
characteristics and criticity, intrusion scenarios and patch or configuration
details.

- security activity, is a mid-term to long-term reporting, providing macro
data about intrusion types, frequency, sources and consequences on the
supervised system. At a lower level, it is to be used in order to determine
trends and identify specific items such as a recurring attack sources or
mostly targeted services to watch for.

- system status, which is the “pseudo real-time” interface for end-user,
allowing a close follow-up of open incidents, systems under attack and
intrusion paths activated by intruders. It also provides information about
the reaction and escalation procedure currently occurring in order to
circumscribe the attack.

2.3.3 Reaction and escalation procedures
Eventually, reacting appropriately to an attack is mostly a question of
organization and procedures to be applied by the incident response teams [19].
Reaction ranges from passive monitoring for further information through to
target system emergency halt through CERT incident reporting [20]. Of course,
appropriate reaction should be determined before an attack takes place and
procedures must be validated then securely (mainly in terms of integrity)
stored and made accessible to supervision teams.

In simple terms, a certain level of escalation must be defined in order to
ensure quick and effective reaction, in parallel with the use of appropriate
human resources. Escalation procedures are given in figure 3. Another aspect
to be specified is the delay, defined as t1 in the figure above, in which the
reaction procedure must be launched, according to attack criticity. Once this
delay is exhausted, escalation to the next (upper) level should be automatic.

Qualified Event

Known
Alert

Analysis Engine

Alert Functional Analysis

Incident Ticket Open
t0 set

Level 1 Team
Supervision Agents

YES

Reaction Launch

In depht analysis

t1 reached

Solution
Found

YES

Workaround

Simulation and testing

Specific reaction definition Incident closure

NO

NO

Source Tracking
CERT reporting

Level 2 Team
Security Experts

Level 3 Team
LAB

Figure 3: Escalation Procedure

As we can see three escalation levels have been defined:

- the first level should be what we refer to as agents, i.e. mid-technical
level staff, which are able to understand events generated by A Boxes as well
as the reaction procedure to apply (this is necessary as it is important to be
able to know when the application of such a procedure failed). Agents
escalate incidents to level two, if the event does not match “known events” or
“pre-defined reaction” criteria or if the time limit (t1) is reached depending
upon the incident criticity.

- the second level should be a team of technical experts. These experts are
responsible for the analysis of intrusion events that have not been defined a
priori. Their priority is to qualify events with the help of SOC console
interfaces (cf. §2.3.2.1) and provide a workaround to be applied by level one
agents, pending further research or permanent solutions.

- the third level should be a “laboratory” in which suspicious packets, system
operations and so on will be re-played, in order to determine the nature of
the unknown intrusion and provide a fully qualified reaction procedure. The
lab will also be responsible for contacting vendors of OS, applications,
hardware, etc. for patch design and / or their application.

3 Collection and storage

3.1 Data collection
Collecting data from heterogeneous sources implies the setup of two kinds of
agents: protocol and application. The former collect information from E
Boxes, the latter parses information for storage in a “pseudo-standard”
format. Those two modules are connected by a dispatcher. Such an
architecture allows high-availability and load-balancing systems to be set at
any level into the architecture.

Figure 4 shows some architecture examples, based on the details provided
below.

protocol
agent

protocol
agent

protocol
agent

dispatcher dispatcher

Encryption

Decryption

Events

HA & LB

application
agent

application
agent

application
agent

E Box E Box E Box

Unsecure Network protocol
agent

protocol
agent

protocol
agent

socket socket socket

sockets sockets

mqueue mqueue mqueue

mqueue mqueue mqueue

dispatcher

application
agent

application
agent

application
agent

Events

E Box E Box E Box

HA & LB

HA & LB

distributed collection architecture
with /HA & LB local collection architecture

Figure 4: Collection Macro Architecture Examples

3.1.1 Protocol agents

3.1.1.1 Basic functions
Protocol agents are designed to receive information from specific transport
protocols, such as syslog, snmp, smtp, html, etc. They act like server side
applications and their only purpose is to listen to incoming connections from
E Boxes and make collected data available to the dispatcher (cf. §3.1.3).

The simplicity of such agents make them easy to implement and maintain.

The raw format storage is usually a simple file, though direct transfer to the
dispatcher through named pipes, sockets or shared memory ensures better
performance.

3.1.1.2 Performance and availability
An interesting part of this approach, is the ease with which one can deploy
farms of agents, as they are very simple applications that don not share data.
It is thus possible, for very large systems to deploy syslog, snmp, smtp, .
servers array, etc., which will be served by standard HA & LB equipment.
Cluster architecture is also a possibility.

The objective is to provide a scalable and available collection platform,
whichever approach is taken.

3.1.1.3 Security
From a security point of view, the most important point is to ensure the
integrity of data collected by agents. This is particularly important if
data is to be transferred on a shared or un-trusted network.

Obviously, most protocols used to collect information, sit on top of the
unreliable UDP layer. It seems therefore necessary to encapsulate such data
into a secure tunnel in order to ensure that data will reach the collection
agent and that it will not be altered during transport. This last point also
concerns data sent over TCP (just like through smtp or http). However, in
order to maintain a high performance level and allow better HA and LB
operations, it would be intelligent to perform encryption-related operations
on dedicated equipment, on each side of the communication.

3.1.2 Dispatcher and application agents

3.1.2.1 The dispatcher
The dispatcher’s purpose is to determine the source-type of an incoming event
and then forward the original message to the appropriate application agent.
Once again, implementation is relatively trivial, once a specific pattern has
been found for each source-type from which the data may be received.

Autonomous operations performed by the dispatcher are the following:

- listen to an incoming channel from protocol agents, such as socket, named
pipe, system V message queue, etc.

- check pattern matching against a patterns database that should be pre-loaded
in memory for performances considerations. This database contains patterns
specific to each couple (E Box type, Xmit protocol), as numerous event

generators use different messages formats depending on the transmission
protocol.

- send the original message to an E Box specific application agent through any
suitable outgoing channel.

3.1.2.2 Application agents
Application agents are specific to each (E Box, Xmit protocol) couple. They
perform formatting of messages so that they match with the generic model of
the message database.

Autonomous operations performed by application agents are:

- listen to an incoming channel from dispatchers, such as socket, named pipe,
system V message queue etc.

- parse the original message into standard fields.

- transmit the formatted message to corresponding D Boxes. Once again any
kind of channel can be used, depending on the D Box nature (database, chained
pointers, etc.).

3.1.2.3 Dispatchers and application agents merging

, As fully distributed architecture theoretically appears to be the ultimate
solution for scalability and high-availability, some implementations may need
redundant operations to perform functions of dispatchers and application
agents.

--
As an example, based on a regexp parsing in perl, the following operation
would be performed by the dispatcher in order to identify a Snort 1.8.x alert
in syslog format:

if($line =~ /.*snort: \[\d+:\d+:\d+\] .*) {

send_to_snort_1.8_syslog_agent($line)
}

and the application agent would perform the following operation:

if($line =~ /.*\[\d+:\d+:\d+\] (.*) \[Classification: (.*)\] \[Priority:.*\]:
\{(.*)\} (.*) -> (.*)/) {
 # fill formatted messages fields cf. §3.2
 $msgtype = “Snort 1.8 – Alert”;
 $proto = getprotobyname($3);
 $src = $4;
 $dst = $5;
 $intrusion_type = $intrusion_type[SnortIntrusionType($2)];
 $info = $1;
 }

It appears that these two operations overlap and that, in the case of a
centralized platform, the following operation would reduce resource usage and
provide exactly the same result:

if($line =~ /.*snort: \[\d+:\d+:\d+\] (.*) \[Classification: (.*)\]
\[Priority:.*\]: \{(.*)\} (.*) -> (.*)/) {

 $msgtype = $msgtype[1];
 $proto = getprotobyname($3);
 $src = $4;
 $dst = $5;
 $intrusion_type = $intrusion_type[SnortIntrusionType($2)];
 $info = $1;
 }

--

In some cases, it is then probable that dispatcher and application agents will
be merged for the sake of performance and simplicity.

3.2 Data formatting and storage

Two kind of data have to be formatted in a “standard” manner (ie. homogeneous
and understandable by any module of the SOC): host entry and collected
messages.

3.2.1 Host entry

3.2.1.1 Unique host identification
The need for a standardized host data structure appears as:

- sensors may transmit host information in IP address format or FQDN (Full
Qualified Domain Name) format.

- multi-homing techniques provides multiple IP address for the same physical
system.

- virtual host techniques provides multiple FQDN for the same physical system.

- HA & LB systems may hide multiple systems behind a single IP address or
FQDN.

It appears that identifying a host either by its IP address or its FQDN is not
reliable. What is more, in the never-ending need for performance, (reverse)
DNS lookup cannot be performed for each new (IP address) FQDN detected in
logs.

It is then necessary to rely on a third-party ID, IP address and FQDN
independent: the host token.

3.2.1.2 Host entry data structure

The data structure to store host information follows the scheme given in
Figure 5.

The function and implementation of each part is trivial and should not need
further explanation.

Host Token

@Host_IP_Table

@Host_FQDN_Table

ID

IP Address

ID

FQDN

Host Table

Host IP TableHost IP Table

Figure 5: Host Entry Data Structure

3.2.1.3 Data management and maintenance

The best way to handle such data without acceding to a database or browsing a
tree of chained structures, is to generate a hash-table holding corresponding
host tokens. Such a hash-table should be created in memory at system startup
and updated each time a new address or FQDN is identified.

An update of the original database should, of course, be planned in order to
save new data. The delay between each synchronization is to be defined
according to performances constraints.

3.2.2 Messages

3.2.2.1 Homogeneous messages format structure
Working on data generated by the different types of equipment, transmitted via
different protocols requires “standard” formatting. Although an effort has
been made to define a worldwide standard with IDMEF [21], it appears that the
XML bus used is too heavy and resources consuming, for our purposes of event
correlation. However, a separate translation process MUST be implemented for
IDMEF compliance.

Structure of a formatted message is the following

Field Attributes Description
id Unique Unique message ID
sensor_id Not Null Unique Sensor ID
msg_type Not Null Type of message (ipchains, snort-1.8.x-alert etc.)
epoch_time Not Null Date in epoch format of event generation
source Intrusion Source Host Token
target Intrusion Target Host Token
proto Protocol number [22]
src_port Intrusion source port number
tgt_port Intrusion target port number
info Additional info
int_type_id Not Null Intrusion type ID (Filter, Access etc.)
int_id Intrusion ID
message Not Null Original message

Table 1: Formatted message structure

3.2.2.2 Third-party structures
As described in Table 1, other data is involved in the creation of formatted
messages. Relations between each structure are given in Figure 6.

Host Token

@Host_IP_Table

@Host_FQDN_Table

ID

IP Address

ID

FQDN

Host Table

Host IP TableHost IP Table

ID

Sensor ID

Message Type ID

Message Table

Sensors Table

Sensor ID

Sensor Type ID

Host Token

Info

Msg Type Table

Msg Type ID

Msg Type Description

Epoch Time

Source

Target

Proto

Source Port

Target Port

Info

Intrusion ID

Original Message

Intrusion Table

Intrusion ID

Intrusion Type DescriptionBID

CVE

Arachnids ID

Intrusion Type ID

Intrusion Type Table

Intrusion Type ID

Intrusion Type ID

Sensor Type Description

Sensor Type Table

Sensor Type ID

Figure 6: Formatted message definition structures

Apart of the Host Table data structure described in §3.2.1, the tables
involved in the building of a formatted message are the following:

- Sensor Table, this table is designed to identify each sensor on the
supervised system. This sensor is given a unique ID and a sensor type.
Additional optional data, are a host token (if the sensor is IP) and a
description.

- Sensor Type Table, this table is only designed to provide a human readable
description of each sensor type.

- Message Type Table, this table provides a human readable description of
Message Type ID.

- Intrusion Table, the purpose of this table is to provide matches from
different references, to a similar attack. As examples, we give BID (Bugtraq
ID), CVE ID and Arachnids ID. Others can be integrated.

- Intrusion Type Table, this table defines major intrusion type families such
as filter, scan, fingerprinting, exploit, access, etc.

As for the Host Entry Table, most data involved in the building of a formatted
message should be loaded in memory at startup and regularly synchronized.

4 Correlation

4.1 Overview

4.1.1 Operating the correlation
The correlation’s purpose is to analyze complex information sequences and
produce simple, synthesized and accurate events. In order to generate such
qualified events, five operations are to be performed:

- duplicates identification, the first, obvious, operation is to identify
duplicates and set a specific flag in order to keep the information and
continue without the need keep multiple identical messages.

- sequence patterns matching, is the most common operation performed by a
correlation engine. Its purpose is to identify a sequence of messages which
would be characteristic of an intrusion attempt. It makes it possible to
identify on-going intrusion processes, as well as complex intrusion scenarios.

- time pattern matching, is designed to include another important dimension in
intrusion analysis: time. This is mainly used for context (see below)
management, as well as slow and distributed intrusion processes.

- system exposure and criticity analysis, provides information about the
target system’s vulnerability to detected intrusion attempts. Indeed, it
seems inappropriate to have a SOC generating alarms concerning an intrusion
scenario based on a vulnerability that the target system is not exposed to.
Another piece of information is the criticity of the intrusion i.e. its
overall impact on the supervised system. This helps to manage the priorities
in terms of reaction to multiple incidents.

- security policy matching, is a behavior-based filter that eliminates
specific events if they match security policy criteria such as administrator
login, identification processes and authorizations / restrictions.

A global overview of correlation operations is given in figure 7 below.

Correlation

Alert Stats

www.cust1.com
 hack1.com
 hack2.com

mail.cust1.com
 hack1.com
 hack3.com

www.cust2.com
 hack3.com
 hack2.com

Dispatch

Source &
Target

Correlation

Message
AnalysisVulnerability

Database

System
Exposure

System Status

Structural
Analysis

Security Policy

Date /
Time / Source

Match
Behavior
Analysis

hack2.com
 www.cust1.com
 www.cust2.com

hack3.com
 mail.cust1.com
 www.cust2.com

hack1.com
 www.cust1.com
 mail.cust1.com

Contexts

Intrusion Path

Functional
Analysis

Formated messages

Figure 7: Main correlation operations

4.1.2 Introduction to contexts
The analysis defined above is based upon a specific structure called contexts.
All correlation operations are performed against these structures. In simple
terms, the definition of a context is the following: a container of formatted
data matching a common criteria.

Therefore, any message stored in the formatted message database is to be part
of one or more contexts. Correlation operations will be done in parallel so
that they can be run simultaneously on each context.

Two kinds of context management approach can be implemented:

The first one is to define independent and distinct contexts. Each context
will contain messages matching every criteria. We define such an
architecture as an array of contexts.

The second approach is a hierarchical one. Top level contexts matching a
limited number of criteria are defined. Then sub-contexts, based on different
criteria, are created and so on. This will be defined hereafter as context
tree.

As is to be expected, none of the preceding approaches meet all needs, be
they in terms of performance or functionality. A mixed architecture will thus
have to be defined.

4.2 Contexts

4.2.1 Context definition criteria
Defining context criteria must be done according to security related events
that the SOC must react to, be they distributed scanning operations, finger-
printing, massive exploit testing, account brute forcing, spamming and so on.

A full functional architecture of contexts is given in figure 8 (§4.2.2.1).

4.2.1.2 Source and target
The first obvious criteria is the attacking and attacked host’s ID, which has
to be standardized (cf. §3.2.1).

 - source, defining source as a context creation criteria allows sweeps
detection, identification of systems used as attack relays or compromised by
worms and targeted hack-proofing.

- target, contexts created by target criteria will provide information on
scans (be they distributed, slow or “normal”) and, should it even be noticed,
intrusion attempts and system compromises.

Two arrays of context should then be defined, one with context matching
sources, another matching targets. Each context of each array should then be
considered as a top-level context for the context trees. The criteria to be
matched by the smallest “branches” would be target ID (for contexts created by
the source ID match) or source ID (for contexts created by the source ID
match).

4.2.1.3 Protocol and ports
Whilst working with trivial data, the protocols and the ports of the targeted
systems should form the criteria for the next level of context ”branches”.
This is mainly done in order to isolate single scanning operations from heavy
repetitive attempts to compromise a system through a specific application.
What is more, it helps to identify the various steps of an intrusion.

Indeed one of the most common intrusion scenario, is a wide portscan sweep
followed by fingerprinting / version identification on open ports followed by
an exploit launched on systems believed to be vulnerable.

4.2.1.4 Intrusion type
In order to identify which type of message is stored, thus starting a more
accurate analysis of messages, a next level of context generation is performed
according to the intrusion type ID (defined in §3.2.2.2). An example of
intrusion type ID definition is given in table 2 below.

Intrusion Type ID Description
0 / Unknown Unknown intrusion type
1xx - Identification Target identification
100 / Filtered Packets filtered by firewalls, ACLs etc.
110 / Scan Basic portscan detection
120 / Fingerprinting Target identification
2xx - Exploits Bulk intrusion attempts
200 / Exploit Exploit launch detection
3xx – Denial of Service Successful DoS attacks
300 / Denial of Service Partial DoS attack
310 / Denial of Service Global DoS attack
4xx – Security Bypass Security policy bypass attempts
400 / Spoofing IP / MAC spoofing
410 / Content Content filtering bypass
420 / Privileges Privilege gaining attempts
5xx – System compromise Attempts to compromise the target system
510 / Account Success Account access
520 / Data Failure Access to private data attempts
530 / Integrity System integrity compromise

Table 2: Intrusion type ID

4.2.1.5 Intrusion ID
The last “branch” of contexts contains specific intrusion ID, i.e. the
characterization of each message. At this level we reach the atomic (except
for duplicates – cf. §4.2.2.2) dimension of each message. This field refers
to the Intrusion Table (cf. §3.2.2.2) and will be responsible for the link
between the correlation engine and system status information stored in the
Knowledge Base (cf. figure 2 and §2.1.1).

4.2.2 Contexts structure
As any correlation operation is exclusively performed on contexts, it appears
that their structure is probably one of the most important aspects of the SOC.

4.2.2.1 Functional architecture
The functional architecture has been described in the preceding chapter. It
is made up of an array of context trees. Each tree contains 4 level of
branches, as described in figure 8.

Target
proto.port
Target

proto.port
Target

proto.port

Target
Host Token

Target
Host Token

Target
Host Token

Target
Host Token

Target
Host Token

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Target
Host Token

Target
proto.port

Target
proto.port

Target
Host Token

Target
proto.port

Target
proto.port

Source
Host Token

Target
Host Token

Target
proto.port

Target
proto.port

Array of source contexts

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Intrusion
ID

Intrusion
ID

Intrusion
ID

Intrusion
ID

Intrusion
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Int. Type
ID

Target
Host Token

Target
Host Token

Target
Host Token

Target
Host Token

Figure 8: Contexts functional architecture

4.2.2.2 Data structure
In order to handle the architecture defined above, we need to implement a
structure that will ensure proper storage and access to information.

Figure 9 describes a scheme for context implementation. As PERL natively
implements arrays and hash-tables we will use the PERL notation. However,
this is not necessarily a recommended implementation.

In this implementation example the following fields are defined.

- start_time and stop_time, these fields are found in each branch of the
context structure. It provides information on time the first and last
messages concerning a given branch (and dependent sub-branches) were
generated.

- duplicate, gives the number of duplicate messages. Duplicate messages
contain exactly the same information from one message to another except for
the time information.

Other fields are self-explanatory or have been explained already.

%AttackSources

source

Hosts Table

attack hashtable address

$AttackSources{$source}

target detail hashtable address

start_time First reception time

stop_time Last reception time

${$AttackSources{$source}}{$target}

proto.tgt_port (protocol, target port) id

start_time First reception time

stop_time Last reception time

0 Unknown array address

100 Filtered array address

530 Integrity array address

Intrusion Type Table

${{$AttackSources{$source}}{$target}}[$int_type]

attack_info_id attack info hashtable address

start_time First reception time

stop_time Last reception time

${{{$AttackSources{$source}}{$target}}[$int_type]}[attack_info_id]

intrusion_id Intrusion id

start_time First reception time

stop_time Last reception time

duplicate Duplicate info

Intrusion Type Table

Figure 9: Contexts implementation scheme

4.2.3 Contexts status
Another important characteristic of context is its status. We define three
distinct statusesas detailed below:

- active, context matches specific criteria (usually based on time but could
be any other criteria), which could be characteristic of an on-going intrusion
process. Typically, such a context appears to be under a heavy load from the
arrival of new message and its analysis by the correlation engine should be
set to the highest priority possible.

- inactive, such a context either does not match “active” criteria or did not
receive a specific closure code. This means that it is no longer analyzed by
the correlation engine, but that it can be reactivated by the next message
matching the same context criteria.

- closed, in this state a context is completed. Any new message matching
this context criteria will create a new context.

Context status management is summarized in figure 10.

New Messages

Timeout

Closure Code

New Message

Active Inactive

Closed

Figure 10: Context status management

4.3 Analysis

4.3.1 Structural analysis
The purpose of structural analysis is to identify on going intrusion attempts,
manage context inactivity status and context closure conditions. In simple
terms, structural analysis is a set of operations performed by independent
modules on each context. Each module is activated by a specific message and
performs analysis using a “standard” semantic.

4.3.1.1 Analysis modules structure
The output of the analysis modules is the result of several logical operations
between autonomous conditions against fields of contexts. Figure 11
describes members of such operations.

Analysis Module

Message Correlation Message Correlation||

Field Condition Field Condition Field Condition&& &&

Figure 11: Analysis module structure

Field conditions have the following structure:

field operator <field | value> [!]

It appears that the power of structural analysis relies on the number of
operators made available. However, the very structure of contexts provides
embedded operations such as source, target, port correlation. This not only
increases the number of “native” operators but also improves significantly the
performances of structural analysis.

The ! sign indicates that the field condition is to be matched in order to
activate the module (cf. below)

4.3.1.2 Analysis module activation
Two kind of events can activate analysis modules: messages and time.

- messages, as described above, some field conditions must be matched in order
to activate an analysis module. A header containing field conditions to be
met, is then generated for each analysis module. Given the structure of
analysis module, it appears that the header will be a set of logical OR
operations, whose members will be field conditions that require the least
amount of resources to be evaluated.

- time, the analysis module header may also contain timer information forcing
the correlation to be evaluated. This is mainly used for context closure and
time dependent intrusions detection such as (slow) portscans, brute forcing,
etc.

4.3.2 Advanced correlation
Advanced correlation operations are performed in order to define the criticity
of an intrusion attempt and evaluate if such an intrusion attempt is permitted
according to the security policy.

4.3.2.1 Functional analysis
This second correlation step is performed in order to evaluate system exposure
to the intrusion and the overall impact of such an intrusion on the supervised
system.

Once the structural analysis has provided information about an occurring
intrusion attempt, a request is made to Customer Status part of the K Box.
This request contains the Intrusion ID and the Host token of the target. The
response provides the following pieces of information:

- criticity, is a value from an arbitrary scale, typically info-warning-minor-
major-critical based.

- closure code, if the context is to be closed, usually because the target is
not impacted by the intrusion attempt.

- message, a new formatted message to be appended to the actual context, that
may activate additional analysis modules.

4.3.2.2 Behavior analysis
The purpose of this last analysis is to define if the attempts match the
security policy. This is mainly used to manage access to accounts but can
also be implemented in the case of pre-programmed audits, portscans, etc.. In
such a situation a closure code is sent to the context.

Technically, this analysis is performed in exactly the same way as structural
analysis i.e. via specific modules whose structure is loaded from the
security policy part of the K Box.

5 Conclusion

The complexity of SOC setup is more a question of the integration than the
implementation of individual modules. The emerging standards should provide
help in reducing gaps between theoretical approaches, proprietary
implementations and stand-alone systems.

In the meantime, intrusions are clearly taking place and there is thus a need
for operational supervision systems today. Experience shows that a pragmatic
approach needs to be taken in order to implement a professional SOC that can
provide reliable results. The theory described above forms the framework
for deploying such a SOC.

Glossary

A Box: Events analysis module
C Box: Event collection & Formatting module
CCR: Client Configuration Record
D Box: Events databases module
E Box: Events generators module
FQDN: Full Qualified Domain Name
HA: High-Availability
K Box: Knowledge base
LB: Load-Balancing
R Box: Events reaction module
SOC: Security Operation Center

Bibliography

[1]Network Intrusion Detection – An Analyst’s Handbook – Second Edition –

Stephen Northcutt, Judy Novak – New Riders – ISBN: 0-7357-1008-2

[2]Intrusion detection using autonomous agents – Eugene H. Spafford, Diego
Zamboni – Computer Networks 34 (2000) 547-570

[3]Bypassing Intrusion Detection Systems – Ron Gula - Network Security
Wizards

[4]Insertion, Evasion and Denial of Service: Eluding Network Intrusion
Detection - Tom Ptacek, Timothy Newsham

[5]Application-Integrated Data Collection for Security Monitoring – Magnus
Almgren, Ulf Lindqvist – SRI International

[6]Interfacing Trusted Applications with Intrusion Detection Systems – Marc
Welz, Andrew Hutchison – University of Cape Town

[7]IETF Intrusion Detection Working Group – M. Erlinger, S. Staniford-
Chen, et al.

[8]Probabilistic Alert Corelation – Alfonso Valdes and Keith Skinner – SRI
International

[9]Designing a Web of High-Configurable Intrusion Detection Sensors –
Giovanni Vigna, Richard A. Kemmerer and Per Blix – Reliable Software
Group – University of California Santa Barbara

[10]Recent Advances in Intrusion Detection - W. Lee (Editor), L. Me

(Editor), A. Wespi (Editor) - ISBN: 3-5404-2702-3

[11]A Visual Mathematical Model for Intrusion Detection - Greg Vert, Deborah

A. Frincke, Jesse C. McConnel – Center for Secure and Dependable
Software – University of Idaho

[12]A Framework for Cooperative Intrusion Detection – Deborah Frincke, Don

Tobin, Jesse McConnel, Jamie Marconi, Dean Polla - Center for Secure and
Dependable Software – University of Idaho

[13]Modeling and Simulation of Intrusion Risk – Renaud Bidou – Intexxia

[14]The IEEE Standard Dictionary of Electrical and Electrics Terms – John

Radatz - IEEE

[15]Fundamentals of Computer Security Technology – Edward G. Amoroso

[16]A Common Language for Computer Security Incidents – John D. Howard,

Thomas A. Longstaff – Sandia Report – SAND98-8667

[17]Remote Network Monitoring Management Information Base – IETF RFC 1757 -

S. Waldbusser - Carnegie Mellon University

[18]Attack trees - Bruce Schneier – Counterpane Labs

[19]Survivable Networks Systems: An Emergency Discipline – R. J. Ellison,

D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff, N. R.
Mead – CERT Technical Report - Carnegie Mellon University

[20]Incident Reporting Guidelines – CERT Coordination Center - Carnegie
Mellon University

[21]Intrusion Detection Message Exchange Format Data Model and Extensible

Markup Language (XML) Document Type Definition – D. Curry, H. Debar –
IETF Intrusion Detection Working Group

[22]Assigned Numbers - RFC 1700 – J. Reynolds, J. Postel – Internet Working

Group

[23]Analysis Techniques for Detecting Coordinated Attack and Probes – John

Green, David Marchette, Stephen Northcutt, Bill Ralph

[24]A Pattern Matching Based Filter for Audit Reduction and Fast Detection of

Potential Intrusions – Josué Kuri, Gonzalo Navarro, Ludovic Mé, Laurent
Heye

