
 

 

 

 

 

 

 
 
 
 
 
 
Mitigating scanners and crackers 
White Paper 

 

Renaud Bidou 

renaudb@radware.com 

 

November 2007 

 

Version 1.0  
 

 

 

 

 

 

 

 

 

 

 

 

 



Mitigating Scanners and Crackers 

p.2 

Contents 

INTRODUCTION 6 

SCANNERS AND CRACKERS 6 
THE NEED FOR A PROTECTION 6 
MITIGATING THE THREAT 6 

MAPPING THE THREAT 7 

CLASSIFICATION AXIS 7 
DISCOVERY AND IDENTIFICATION TOOLS 7 

NETWORK LAYER 7 
OPERATING SYSTEM LAYER 8 
APPLICATION LAYER 8 
SCRIPTS 9 
USERS 9 

VULNERABILITY TESTING TOOLS 10 
GENERIC SCANNERS 10 
DEDICATED SCANNERS 10 
ATTACK TOOLS 11 

MASS GENERATOR 12 
FUZZERS 12 
BRUTE FORCERS 12 

THREATS MAP 13 

DETAILS OF OPERATIONS 14 

DISCOVERY TOOLS 14 
LAYER 2 DISCOVERY TOOLS 14 
LAYER 3  DISCOVERY TOOLS 16 
LAYER 4  DISCOVERY TOOLS 18 

IDENTIFICATION TOOLS 22 
OPERATING SYSTEMS IDENTIFICATION TOOLS 22 
APPLICATION IDENTIFICATION TOOL 28 

CRACKING TOOLS 33 
VULNERABILITY SCANNERS 33 
MASS GENERATORS AND ATTACK TOOLS 37 

 

 

 



Mitigating Scanners and Crackers 

p.3 

MITIGATING THE THREAT 42 

THE CHALLENGE OF MITIGATION 42 
AXIS OF RESEARCH 42 
THE NEED FOR NEW TECHNOLOGIES 42 
COMMON PREVENTION ISSUES 42 

DETECTION METRICS 43 
GLOBAL NETWORKING ACTIVITIES 43 
DETECTING ERRORS 44 
TUNING ERROR STATISTICS 46 

CHARACTERIZATION AND BLOCKING 48 
COMMON METHODS AND LIMITATIONS 48 
FOOTPRINTING THE THREAT 49 

CONCLUSION 54 

SCOPE OF MITIGATION 54 
FUTURE WORK AND IMPROVEMENTS 55 

APPENDICES 56 

APPENDIX A : REFERENCES 56 
DOCUMENTS 56 
STANDARDS 56 
TOOLS 56 

APPENDIX B : COMMAND LINES 57 
LAYER 2 SCANS 57 
LAYER 3 SCANS 57 
LAYER 4 SCANS 57 
OS SCANS 58 
APPLICATION SCANS 58 
VULNERABILITY SCANS 58 

 



Mitigating Scanners and Crackers 

p.4 

 

Table of figures 
Figure 1 : Threats map __________________________________________________13 
Figure 2 : Layer 2 scan with THCrut ________________________________________15 
Figure 3 : Layer 2 scan capture____________________________________________15 
Figure 4 : Passive Layer 2 scan with arpwatch________________________________16 
Figure 5 : ICMP Netmask scan with THCrut __________________________________18 
Figure 6 : ICMP Netmask scan capture _____________________________________18 
Figure 7 : Nmap FIN scan ________________________________________________21 
Figure 8 : Nmap FIN scan capture _________________________________________21 
Figure 9 : Nmap OS scan capture__________________________________________23 
Figure 10 : Xprobe run __________________________________________________25 
Figure 11 : THCrut run with fingerprint details_________________________________26 
Figure 12 : sinfp scan capture_____________________________________________26 
Figure 13 : amap triggers for http __________________________________________29 
Figure 14 : amap responses for some http servers_____________________________29 
Figure 15 : nmap run for application identification______________________________29 
Figure 16 : hmap run against Apache 2 _____________________________________31 
Figure 17 : hmap run against IIS 5.0________________________________________32 
Figure 18 : extract of server.db ____________________________________________34 
Figure 19 : server-msg.db sample entry _____________________________________35 
Figure 20 : Attack point detail _____________________________________________36 
Figure 21 : SQLiX run ___________________________________________________39 
Figure 22 : SQL injection obfuscated by SQLiX _______________________________39 
Figure 23 : SQL injection response with valid SQL_____________________________40 
Figure 24 : SQL injection response with invalid SQL ___________________________41 
Figure 25 : Legitimate user connection profile ________________________________47 
Figure 26 : Malicious source connection profile _______________________________47 
Figure 27 : Threats map coverage _________________________________________54 
 



Mitigating Scanners and Crackers 

p.5 

 

Index of tables 
Table 1 : Layer 2 scanners metrics _________________________________________15 
Table 2 : Layer 3 scanners metrics _________________________________________17 
Table 3 : Layer 4 vertical port scan metrics___________________________________20 
Table 4 : OS scan protocol distribution ______________________________________27 
Table 5 : OS scan rate based characteristics _________________________________27 
Table 6 : Generic application scanners metrics _______________________________29 
Table 7 : HTTP fingerprint samples_________________________________________31 
Table 8 : HTTP identification scanners metrics________________________________32 
Table 9 : Vulnerability scanners metrics _____________________________________36 
Table 10 : Global networking activities ______________________________________43 
Table 11 : Erroneous responses ___________________________________________44 
Table 12 : Layer 3 footprint characteristics ___________________________________49 
Table 13 : Layer 4 footprint characteristics ___________________________________50 
Table 14 : Application layer footprint characteristics____________________________51 
 



Mitigating Scanners and Crackers 

p.6 

 

Introduction 

Scanners and crackers 
Scanners and crackers are the main tools used for security testing automation. In the 
hands of experts they are usually used to speed up security audit processes. 

Either they will be used to perform low added value operations such as network sweeps 
or port scans, or they will make it possible to quickly perform tests that would need 
months if they were done manually – like password cracking. 

They can also be considered as a knowledge base, which will simplify the research for 
vulnerability exposure of specific operating systems or applications. 

The need for a protection 
However, malicious individuals can also take advantage of such tools in order to quickly 
and efficiently find vulnerabilities in target systems and network infrastructures. Moreover, 
worms usually propagate via automated testing and infection process, imitating (or simply 
copying) the technology used in scanners and crackers.  

Therefore being able to block such behavior becomes mandatory as it will eliminate most 
large-scale hacking attempts, block worms and considerably slow down targeted cracking 
operations. 

Mitigating the threat 
Understanding how such tools work is a mandatory step before designing a mechanism 
that would efficiently block their operations. Therefore we will first detail their operational 
mode and try to find with criteria that could be leveraged to provide an effective 
protection. 

Once those criteria will be identified we will analyze the feasibility to implement a practical 
solution for production networks. 

 



Mitigating Scanners and Crackers 

p.7 

 

Mapping the threat 

Classification axis 
There are many tools used to automated security tests. However, classification can be 
made simple as long as we consider two axes: the functional and the application scopes.  

The functional scope will have tools being marked as member of one of the following 
categories : 

• Discovery and identification; 

• Vulnerability testing; 

• Mass generators. 

The second axis will classify tools according to their operational layer: network, operating 
system, application (which stands for standards software), scripts (custom settings and 
developments) and users. 

This last axis is trivial and tools will naturally be affected to the appropriate category. 
Therefore we will focus on the first one and build a tools map starting from this axis. 

Discovery and identification tools 
Discovery and identification tools are designed to automate the process of mapping 
target infrastructure. From THCrut [thcrut] that will generate ARP requests on a local 
network to httprint [httprint] that will try to fingerprint web servers, these tools represent 
the largest category.  

However, distinguishing the application scope is an easy task.  

Network layer 

This is the most popular category as operations to be performed are quite basic. 
Therefore these tools are easy to write, analyze and copy; and most automated 
malwares such as worms or bots do have their own, home-made, discovery tool. 
However, and as they all rely on the same techniques, the way to mitigate their 
operations remains the same. 

Major families of network discovery tools are : 

- ARP discovery tools: They are only efficient on local networks and detects system 
which are up by performing simple ARP requests for IP addresses of a subnet. 
Main tools implementing this technique are THCrut [thcrut] and ettercap 
[ettercap];  

- ICMP discovery tools: They perform different kind of ICMP requests and analyze 
answers they get. While most basic tools, such  as fping [fping] will quickly 
generate ICMP echo requests, more advanced scanners, like nmap [nmap], will 
make it possible to use stealthier requests, using ICMP timestamp (code 13) or 
even ICMP address mask (code 17 – specified in RFC 950 [rfc950]). This last 



Mitigating Scanners and Crackers 

p.8 

option is less reliable as most OS don’t answer, but definitively faster and more 
discreet; 

- Port scanning tools: There are many ways to scan ports. Most of them have been 
described as early as 1997 in “the art of scanning” [artofscanning] and are very 
well known. They have been implemented in hundreds of tools. Most famous are 
probably nmap [nmap] and hping [hping], but most malicious implementations in 
malwares are simply coded from scratch. 

Being able to block operations similar to those performed by these tools will be enough to 
stop a noticeable portion of malicious activities, even before the infrastructure gets 
visible. 

Operating system layer 

The main objective of tools that belong to this category is to accurately identify the 
operating system of a host. The need for accuracy may differ, depending on the type of 
device and the purpose of the scan. 

Sometimes the name of the manufacturer and the type of device may be enough to 
launch some generic attacks, such as the test of default passwords. In some other cases, 
vulnerabilities can only be exploited in very specific conditions, such as the version and 
subversion, language, compilation options etc. In such situation accuracy is a must. 

Usually operating systems are identified thanks to banners (telnet, ftp, web servers) and / 
or several types of fingerprints, such as the combination of open ports, the size of the 
TCP window, ISN generation algorithm, options support etc. 

A tool like TCHrut will use banners and TCP ports fingerprint to identify the operating 
system. It is quite quick but not that accurate.  

On the other hand nmap and Xprobe [xprobe] will use more fingerprinting techniques, 
and will usually get better results. In the same category of tools sinfp [sinfp] also uses 
stack fingerprinting but needs less data, making it definitely stealthier.  

Application layer 

Application layer discovery tools are relatively recent. What is more, the application layer 
is very versatile as they are plenty of applications, flavors and versions. Therefore tools 
belonging to this category have to perform two types of operations : 

- Service type identification : This operation is made necessary to know which 
application “runs “behind” an open port; as it is common to have services running 
on non-standard port. Best example of this are web services, which often run 
don’t run on port 80 of Intranet servers or appliances. It is also the case of some 
management applications (such as SSH), that have been moved to non-standard 
ports for security reason; 

- Server software identification : This is the second step which purpose is to identify 
precisely the application and its version that provides the service. It is usually the 
last discovery operation before the effective launch of an attack. 

Tools that belong to this category usually perform both operations described above. 
Three methods are used to get the desired information : banner grabbing, commands 



Mitigating Scanners and Crackers 

p.9 

testing (FTP servers don’t understand the same commands as Web servers) and 
fingerprinting.  

Another classification criteria is the applicative scope coverage provided by those tools. 
Some of those tools are going to simply focus on one application (httprint focuses on web 
servers, svmap [svmap] focuses on SIP servers); while some other will have a larger 
scope, such as (surprisingly !) scanssh [scanssh], or amap [amap].  

Scripts 

The script layer basically includes all custom parameters, settings, and any kind of 
development that can be done on top of legacy applications. Therefore a CGI script a 
graphical front-end or even the directory structure of a web server belongs to this layer. 

As each and every application that runs at this layer is different, discovery and 
identification is the most important step to be taken. Once these operations are 
performed, malicious users or software are provided with enough information to launch 
generic attacks based (such as cookie tampering, SQL injection, etc.) on specific 
parameters. 

The very specific nature of each script-layer component naturally implies that discovery 
tools are dedicated to one type of protocol or application. However, the level of details 
and techniques used are highly variable. As an example nikto [nikto], wikto [wikto] and 
NTOinsight [ntotools] both have HTTP discovery and identification capabilities : 

- nikto will only look for common administrative pages and users home directories;  

- wikto will try a huge list of directories and common pages (backend scanning), will 
follow hyperlinks to scan the whole web site (spidering) and even request google 
search engine for indexed pages that belong to the server (googleing); 

- NTOinsight will mainly spider the remote site, however, it will provide far more 
information such as visible and hidden variable, cookies etc. 

Moreover, layer seven protocols are getting more and more generic and are used to 
transport different type of application data. This is typically the case of HTTP, which is 
widely used to transport XMLRPC commands to web services. In this special case 
discovery techniques are different, and implemented in special tools, such as SIFTwms 
[siftwms]. 

Users 

Last the enumeration of users defined on a system is a necessary step when the 
objective of the attack is to take advantage of other users rights, or simply to impersonate 
further illegitimate operations. 

Hopefully most common applications make quite impossible to scan for existing users or 
to dump users list. It is then a question of either finding a file mistakenly left of the server 
or performs advanced timing attacks. Anyway, except in the case of files found thanks to 
web crawling or backend scanning, there is no automated way to find such list. 

However, for some new protocols and application it is common to observe the 
resurgence of old mistakes. As an example, SIP components that don’t implement 
authentication (which is optional), will generate a message when a requested user does 



Mitigating Scanners and Crackers 

p.10 

not exist. Therefore users discovery is just a question of scanning, based on a dictionary. 
This is what SIPScan [sipscan] simply does. 

Vulnerability testing tools 
Discovering the network, identifying OS and mapping applications is a first step, but not 
enough to compromise an IT infrastructure. Therefore the next step is to evaluate the 
exposure of target systems to vulnerabilities. This is what vulnerabilities scanners are 
made for.  

They can be classified in three families: 

- Generic scanners : they will perform thousands of tests and provide a list of 
potential vulnerabilities that may be exploited; 

- Dedicated scanners : which will also test for multiple vulnerabilities but only 
affecting one specific type of OS or application. 

- Exploitation tools : they launch real attacks toward targeted systems. 

Malicious users and some bots scanning engine will perform a generic or a dedicated 
scan first, while most worms will immediately try to exploit the vulnerability, would the 
target be vulnerable or not. 

Generic scanners 

Generic scanners have to quickly test thousands of potential vulnerabilities against 
multiple targets. Most of these tests belong to one of the two following categories: 

- Accurate identification of the targeted application (type, nature, version etc.) then 
search into a vulnerability database. In this schema, the efficiency of the scanner 
depends on the identification accuracy and the update of the vulnerability 
database; 

- Stimuli generation and analysis of the reaction, that should be different if the 
application is vulnerable or not. Accuracy is then a factor of the way the reaction 
to a stimulus is analyzed.  

As an example the response to a IIS Unicode exploit should be a HTTP code 200. 
However some web application firewalls will answer a HTTP code 200 but with a 
different content. Therefore an appropriate analysis should look for content with 
“Directory of”, which does only matches English versions of Windows… 

One of the most obvious consequences of this operation mode is that generic scanners 
either have their own identification tool (nikto [nikto] uses its home-made mechanism); or 
rely on external ones (sometimes it is just an option, as for nessus that can use amap 
results).  

Dedicated scanners 

Designing a generic scanner is not necessarily difficult. However maintaining it means 
making sure that databases, third-party tools, local settings, fingerprints etc. are up to 
date. This task needs a huge investment in terms of time for research and development. 
And this is quite impossible to achieve when a tool is designed by individuals for non-
commercial purpose.   



Mitigating Scanners and Crackers 

p.11 

Therefore many tools have a limited scope, either in terms of protocols, attacks or 
application types.  Operation modes are similar to those of generic scanners, but the 
focus on very specific targets makes them usually more efficient and more accurate.  

The most famous tool of this category is probably nikto [nikto], which is targeting web 
servers. It implements more than 3.000 security checks, a scanner for hidden pages and 
miscellaneous evasion techniques in order to bypass IDS and IPS. Another example of 
an even more focused tool is iisvs [iisvs]. This tool tests for more than 1.700 
vulnerabilities on IIS v5.0 servers.  

Another popular field of application for dedicated scanners is SQL injections. In this case 
the issue is more the huge number of database types, parameters combinations, attack 
vectors and evasion techniques; it clearly makes it impossible to manually scan for 
vulnerabilities and it requires a very dedicated expertise and even though most tools will 
only focus few servers and techniques. A good example is SQLiX [sqlix], that tries to 
exploit vulnerabilities leading to the control of MS-SQL and MySQL databases, through 4 
different vectors : error messages, comment injections (only for MySQL), blind statement 
injection and blind string injection. On top of it implements quite subtile obfuscation 
techniques, making it impossible to detect with a signature. 

Usually this kind of scanner is used by malicious users who already know which 
application they want to focus. In such case the scanner will go though most filtering and 
will not generate many alerts from firewalls. This increased stealth is of great value in 
such case. 

Attack tools 

In this last category we find the tools that are made to exploit vulnerabilities. This should 
be the last stage, once the application has been discovered and identified, and once 
vulnerability has been found.  

The most famous tool that belongs to this category is the Metasploit framework 
[metasploit]. It makes it possible to launch attacks with different payloads which effects 
range from the execution of a command to the spawn of a VNC server on the victim 
system. Once again some more specialized tools exist, in order to facilitate the 
exploitation of specific vulnerabilities. SQLNinja [sqlninja] is one that gets more and more 
popular as it makes the exploitation of SQL injections on MS SQLServer databases trivial 
and very powerful. 

Exploitation of network weaknesses can also be simplified. Many tools, such as Yersinia 
[yersinia] or ettercap [ettercap] implements functions to bypass network-based security, 
interfere with traffic or even hijack network control mechanisms such as DHCP. As usual 
some more targeted tools exist and focus specific network functions and devices. A good 
example of these is voiphopper [voiphopper] which targets network devices to perform 
VLAN hopping. 

However powerful are those tools, they usually require a minimum knowledge and 
understanding of what is going on. Therefore their use is rarely automated and mostly the 
fact of malicious and more or less skillful users. 



Mitigating Scanners and Crackers 

p.12 

Mass generator 
Mass generators are tools designed to launch a massive number of similar operations at 
high speed. Most common programs that belong to this category are password brute 
forcers and fuzzers.  

Fuzzers 

In this last case, tools are used to extensively test input handling of applications. 
Therefore they will generate several types, values and size of inputs and check the 
behavior of the remote system. These tools are essentially used for vulnerability research 
and are not part of the threats we should consider here. 

Brute forcers 

From a certain point of view brute forcers are members of the fuzzers’ family, as they are 
going to test multiple authentication credentials until a special behavior (authentication) 
happens. Whatever families they belong to, brute forcers are quite popular, usually trivial 
to implement and to launch. Their efficiency relies on two main factors: 

1. Quality of the dictionary: quality does not necessarily mean quantity. There are 
not millions of common and default passwords. Moreover it is important to fit to 
contextual parameters, such as the native language of users. And, last but not 
least, testing useless or unlikely passwords is a loss of time, and impacts the 
parameter below. 

2. Speed and reliability: even with an optimized dictionary, there will be thousands of 
login / password combinations to test. This will lead to two main consequences. 
First test may be very long if the brute forcer is not fast enough. The need for 
speed brings to the second consequence, which is a potential lack of reliability 
when techniques used to improve speed are not well implemented. To many 
threads, open sockets or even IPC may impact the stability of the hosting OS, and 
lead to crashes, freezes or information loss, generating “false-positive” results. 

Generic brute forcers will make it possible to target multiple applications. The most 
famous of these tools is Hydra [hydra] from the TCH group. It is able to test passwords 
for more than 20 authentication types, from more usual one (http, ftp) to quite exotic ones 
(cvs, pcanywhere, teamspeak etc.). This kind of tools test authentication methods defined 
in standards, such as the Basic HTTP authentication. 

However, for application-specific authentication, like the authentication form that can be 
found on most web sites, special brute-forcers must be used. Brutus AET2 [brutus] is the 
state of the art for web-based applications. But even more specific tools can be found for 
special purposes. As an example Venom [venom] has been designed to brute-force 
windows authentication via the WMI (Windows Management Instrumentation) interface, 
bypassing a potential account lock. 

Of course the choice of passwords that respects minimum security requirements, such as 
not being found in a dictionary (…) will noticeably reduce the efficiency of such tools.  



Mitigating Scanners and Crackers 

p.13 

Threats map 

 
Figure 1 : Threats map 

 



Mitigating Scanners and Crackers 

p.14 

Details of operations 
Once the main threats have identified, it becomes necessary to understand how they 
proceed to perform their tasks.  

This is the only appropriate way to design a security technology. 

Discovery tools 
Blocking the discovery process is one of the most important step to be taken to block 
automated attack tools. As these tools apply predefined procedures stopping the very 
first one usually stops the whole process. 

In the meantime many exploitation tools need information about the targeted system, 
from the IP address to the parameters to be injected. Without the appropriate knowledge 
the attacker best scenario is a blind test that will require many attempts, with a success 
rate dramatically lowered. 

Network discovery includes probes that will try to get layer 2 (MAC) to layer 4 (transport) 
information from networked devices.  

Layer 2 discovery tools 

At layer 2, discovery is based on ARP requests and responses. Of course this kind of 
discovery is limited to the local network of the attacker.  

There are two techniques, used by tools to discover systems at layer 2 : active and 
passive scan. 

• Active scan 

The first one is an active technique that simply sends out ARP requests to each and 
every IP address of the local network of the interface. Any running system will answer 
these requests and provide the information to the attacker. 

Below is an example of a scan launched with THCrut [thcrut] and an extract of the 
tcpdump capture performed during the scan. In this capture the “responding” exchanges 
have been highlighted. 

 
[root@localhost audits]# thcrut arp 192.168.205.1-1 92.168.205.254 

thcrut: using source ip 192.168.205.163 

thcrut: listening on eth0 

192.168.205.1    00:02:a5:46:22:25 Farallon Computi ng Inc 

192.168.205.254  08:00:37:18:5e:4c Ericsson Busines s Comm. 

192.168.205.11   00:02:a5:ea:92:a6 Farallon Computi ng Inc 

192.168.205.200  00:d0:58:61:1d:c0 CISCO SYSTEMS, I NC. 

192.168.205.140  00:01:02:da:83:d0 INFORMATION TECH NOLOGY LIMITED 

192.168.205.147  00:19:b9:2a:83:1c COMTRON, INC. 

192.168.205.154  00:18:8b:b3:1f:19 OCTAGON SYSTEMS CORP. 

192.168.205.102  00:13:ce:73:a9:db DIGITAL EQUIPMEN T CORPORATION 

192.168.205.174  00:11:11:41:58:1a Cicada Semicondu ctor, Inc. 



Mitigating Scanners and Crackers 

p.15 

192.168.205.50   00:10:f3:0a:c0:6a NEXCOM INTERNATI ONAL CO., LTD. 

192.168.205.182  00:01:e6:16:6b:80 Madge 

192.168.205.185  00:06:5b:b8:17:64 TRI-DATA Systems  Inc.  Netway products, 3274 

192.168.205.60   00:03:b2:2b:63:00 Acer Counterpoin t 

192.168.205.249  00:b0:64:62:6c:c0 Cisco Systems, I nc. 

192.168.205.250  00:05:32:23:71:c0 LECTRA SYSTEMES SA 

192.168.205.251  00:17:9a:af:b7:62 SOURCE-COMM CORP . 

192.168.205.252  00:17:9a:af:b7:6a SOURCE-COMM CORP . 

24 packets received by filter, 0 packets dropped by  kernel 

Figure 2 : Layer 2 scan with THCrut 
 
[root@localhost ~]# tcpdump arp and host 192.168.20 5.163 

10:14:50.532041 arp who-has 192.168.205.1 (Broadcast) tell 192.168.205.163 

10:14:50.532191 arp reply 192.168.205.1 is-at 00:02:a5:46:22:25 (oui Unknown) 

10:14:50.540617 arp who-has 192.168.205.64 (Broadca st) tell 192.168.205.163 

10:14:50.552671 arp who-has 192.168.205.127 (Broadc ast) tell 192.168.205.163 

10:14:50.564644 arp who-has 192.168.205.190 (Broadc ast) tell 192.168.205.163 

10:14:50.572614 arp who-has 192.168.205.253 (Broadc ast) tell 192.168.205.163 

10:14:50.584614 arp who-has 192.168.205.2 (Broadcas t) tell 192.168.205.163 

10:14:50.592614 arp who-has 192.168.205.65 (Broadca st) tell 192.168.205.163 

10:14:50.604618 arp who-has 192.168.205.128 (Broadc ast) tell 192.168.205.163 

10:14:50.612616 arp who-has 192.168.205.191 (Broadc ast) tell 192.168.205.163 

10:14:50.624617 arp who-has 192.168.205.11 (Broadcast) tell 192.168.205.163 

10:14:50.624880 arp reply 192.168.205.11 is-at 00:02:a5:ea:92:a6 (oui Unknown) 

10:14:50.632691 arp who-has 192.168.205.3 (Broadcas t) tell 192.168.205.163 

10:14:50.644618 arp who-has 192.168.205.66 (Broadca st) tell 192.168.205.163 

Figure 3 : Layer 2 scan capture 
 

The only metric that can be analyzed for this kind of attack is the rate of requests sent by 
the discovery tool. We compared the results obtained by THCrut and Ettercap [ettercap]. 
Results are given in the table below. 

 

Table 1 : Layer 2 scanners metrics 
 THCrut Ettercap 

Network Size 255 

Duration (s) 8,43 3,11 

Packets Sent 712 255 

Packets Received 25 24 

PPS 87,4 89,5 



Mitigating Scanners and Crackers 

p.16 

Hosts Discovered 25 24 

 

Although both tools have approximatively the same packet rate THCrut uses more 
probes as it tests up to three times non-responding systems. Therefore the scan is 
definitively more visible from the network point of view, but also more reliable, as THCrut 
discovered one more host than Ettercap. 

• Passive Scans 

Technology behind passive scans is even more trivial. It relies on sniffing the network 
and grab ARP requests and gratuitous announces which are broadcasted over the 
network.  

These techniques take longer than active scan, depending on the activity of the network, 
but are totally invisible from the network. An example of logs provided by arpwatch 
[arpwatch] is shown in the figure below. 

 
Sep  5 08:50:44 localhost arpwatch: new station 192 .168.205.1 0:2:a5:46:22:25 

Sep  5 08:50:44 localhost arpwatch: new station 192 .168.205.154 0:18:8b:b3:1f:19 

Sep  5 08:50:46 localhost arpwatch: new station 192 .168.205.60 0:3:b2:2b:63:0 

Sep  5 08:50:49 localhost arpwatch: new station 192 .168.205.11 0:2:a5:ea:92:a6 

Sep  5 08:50:49 localhost arpwatch: new station 192 .168.205.163 0:f:1f:bd:27:ab 

Sep  5 08:50:55 localhost arpwatch: new station 192 .168.205.185 0:6:5b:b8:17:64 

Sep  5 08:50:58 localhost arpwatch: new station 192 .168.205.141 0:50:b6:40:3c:e8 

Sep  5 08:51:00 localhost arpwatch: new station 192 .168.205.147 0:19:b9:2a:83:1c 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.166 0:19:d2:6c:dd:33 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.121 0:18:8b:b6:c2:24 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.250 0:5:32:23:71:c0 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.174 0:11:11:41:58:1a 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.130 0:1:2:da:83:d0 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.136 0:1:2:da:83:d0 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.135 0:1:2:da:83:d0 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.200 0:d0:58:61:1d:c0 

Sep  5 08:51:23 localhost arpwatch: new station 192 .168.205.252 0:17:9a:af:b7:6a 

Sep  5 08:51:24 localhost arpwatch: new station 192 .168.205.182 0:1:e6:16:6b:80 

Sep  5 08:51:24 localhost arpwatch: new station 192 .168.205.132 0:1:2:da:83:d0 

Sep  5 08:51:24 localhost arpwatch: new station 192 .168.205.140 0:1:2:da:83:d0 

Sep  5 08:51:24 localhost arpwatch: new station 192 .168.205.146 0:19:b9:29:d6:5c 

Figure 4 : Passive Layer 2 scan with arpwatch 
 

Layer 3  discovery tools 

Discovering hosts at the network layer is a question of knowing if a host at a specific IP 
address answers Layer 3 probes. Most basic probes are pings (ICMP ECHO requests). 
But many alternative ICMP request can be performed, such as ICMP TIMESTAMP or 



Mitigating Scanners and Crackers 

p.17 

ICMP ADDRESS MASK requests. For the purpose of discovering routers the ICMP 
ROUTER SOLLICITATION request can also be used. 

However, results will differ, first because all IP stacks don’t necessarily answer to all 
ICMP requests, and second because of possible filtering of ICMP packets. Usually ICMP 
TIMESTAMP requests will be handled, while ICMP ADDRESS MASK requests are only 
handled by network devices (and theoretically only router). This is the same for the 
ROUTER SOLLICITATION request, although the support of this request is rarely 
implemented, mostly for security reasons. 

The table below provides main metrics of scans launched with fping [fping], THCrut 
[thcrut] and nmap [nmap] and implementing different scanning techniques. 

 

Table 2 : Layer 3 scanners metrics 
ECHO MASK TSTAMP 

 
fping thcrut nmap thcrut nmap nmap 

Network Size 254 

Duration (s) 41,78 5,99 4,31 5,98 4,01 4,31 

Packets Sent 977 736 498 750 506 498 

REPLY 13 13 14 6 6 14 

UNREACHABLE 44 9 7 9 7 7 Packets 
Received 

TOTAL 57 22 21 15 13 21 

PPS 25 126 120 127 129 120 

Address scanned 254 254 256 254 256 256 

Number of scans 4 3 2 3 2 2 

Host discovered 13 13 13 6 6 13 

 

All tested scanners launch probes several times during a scan. Nmap will scan the 
network twice, THCrut three times and fping four times. Nmap has one specific behavior 
as it will scan for the broadcast and network address and therefore generate additional 
probes, and usually receive one additional response from the broadcast address. 

Below is an example of a scan launched with THCrut [thcrut] and an extract of the 
tcpdump capture performed during the scan. In this capture the “responding” exchanges 
have been highlighted. 

 
[root@localhost ~]# thcrut icmp -A 10.0.0.1-10.0.0. 255 

thcrut: listening on eth0 

10.0.0.21        icmp_seq=0 ttl=063 mask=255.255.25 5.0 

10.0.0.22        icmp_seq=0 ttl=063 mask=255.255.25 5.0 

10.0.0.31        icmp_seq=0 ttl=063 mask=255.255.25 5.0 

10.0.0.33        icmp_seq=0 ttl=063 mask=255.255.25 5.0 

10.0.0.34        icmp_seq=0 ttl=063 mask=255.255.25 5.0 

769 packets received by filter, 0 packets dropped b y kernel  



Mitigating Scanners and Crackers 

p.18 

Figure 5 : ICMP Netmask scan with THCrut 
 
[root@localhost ~]# tcpdump proto 1 and host 192.16 8.205.163 

11:01:17.203688 IP 192.168.205.163 > 10.0.0.146: IC MP address mask request 

11:01:17.207688 IP 192.168.205.163 > 10.0.0.209: IC MP address mask request 

11:01:17.211689 IP 192.168.205.163 > 10.0.0.21: ICM P address mask request 

11:01:17.213266 IP 10.0.0.21 > 192.168.205.163: ICM P address mask is 0xffffff00 

11:01:17.215700 IP 192.168.205.163 > 10.0.0.84: ICM P address mask request 

11:01:17.223688 IP 192.168.205.163 > 10.0.0.147: IC MP address mask request 

11:01:17.227690 IP 192.168.205.163 > 10.0.0.210: IC MP address mask request 

11:01:17.231689 IP 192.168.205.163 > 10.0.0.22: ICM P address mask request 

11:01:17.233382 IP 10.0.0.22 > 192.168.205.163: ICM P address mask is 0xffffff00 

11:01:17.235694 IP 192.168.205.163 > 10.0.0.85: ICM P address mask request 

11:01:17.243692 IP 192.168.205.163 > 10.0.0.148: IC MP address mask request 

11:01:17.247690 IP 192.168.205.163 > 10.0.0.211: IC MP address mask request 

11:01:17.251690 IP 192.168.205.163 > 10.0.0.23: ICM P address mask request 

11:01:17.259690 IP 192.168.205.163 > 10.0.0.86: ICM P address mask request 

Figure 6 : ICMP Netmask scan capture 
 

Layer 4  discovery tools 

These discovery tools are very common and usually known as port scanners or port 
sweepers. In the first case they will test for a list of open ports on a single host, and such 
operation is often referred as “vertical” scanning. In the second case the same port is 
going to be tested on several hosts. One will then use the expression “horizontal” 
scanning, or sweeps. 

There are four techniques to scan for TCP ports and only one for UDP. These techniques 
are well known and present the following characteristics: 

- TCP Connect: This portscan is the most simple and makes use of simple TCP 
connection attempts to the target port. If the connection is refused (RST) the port 
is considered as closed. If we get no response to the SYN, the port is considered 
as “filtered”, if the synchronization attempt is acknowledged (SYN-ACK) then the 
port is considered as opened. The session is completely established, then cleanly 
closed. 

- TCP Half-scan: this techniques is similar to the TCP connect to the exception that 
if the response from the server is a SYN-ACK then the session is immediately 
reset, before it gets established. 

- TCP FIN: TCP FIN scan is based on the fact that most TCP/IP stacks do not 
behave properly when they receive a FIN packet on an open port. Theoretically 
they should send a RST for any FIN packet that is received on an open port and 
that doesn’t belong to an existing session. However, they usually don’t send any 
notice to the source, while a RST is sent when the FIN packet reaches a closed 
port. 



Mitigating Scanners and Crackers 

p.19 

- TCP Anomalies: Anomalies-based scans are sending abnormal or illegitimate 
packets, such as SYN/RST, “Christmas trees” (all flags sets), packet with no flag 
etc. Scan results are obtained thanks to the fact that in some cases open and 
closed ports don’t behave the same way, some will send out a RST some will not. 
More subtle differences can be found also, such as the TCP window size that may 
be set to zero in some cases.  

- UDP scans: The only way to scan UDP ports is to send UDP packets to the target 
port and analyze any response. If the response received is an ICMP port 
unreachable, the port is closed. If a UDP packet is received the port is probably 
opened and we got a response from our probe. Otherwise, if no response is 
received the port is either opened (but the targeted application didn’t reply) or it is 
filtered by a firewall. 

Some variants exist, using fragmentation, relays or even bounces, but from the target 
point of view the behavior will remain the same. 

In order to characterize portscanning activities main metrics are number and type of 
packets generated. We analyzed scans from nmap [nmap] and hping [hping] both 
vertically on low TCP ports (1-1024).  



Mitigating Scanners and Crackers 

p.20 

Table 3 : Layer 4 vertical port scan metrics 
 

Connect SYN FIN XMAS  

nmap nmap hping nmap hping nmap Hping 

Ports scanned 1024 

Duration (s) 1,25 1,22 4,097 2,45 9,28 1,23 9,28 

SYN / FIN 1056 1025 1025 1040 1066 1030 1066 

ACK 6 NA NA NA NA NA NA 

RST 6 6 6 NA NA NA NA 
Packets 
sent 

TOTAL 1068 1031 1031 1040 1066 1030 1066 

SYN / ACK 6 6 6 NA NA NA NA 

RST 1018 1018 1018 1018 1018 1018 1018 Packets 
received 

TOTAL 1024 1024 1024 1018 1018 1018 1018 

PPS 1667 1673 501 839 224 1662 224 

Port discovered 6 6 6 6 6 6 6 

 

Hping default behavior doesn’t provide appropriate results as the rate used for packet 
generation is too high. Therefore a special option (-i u10) has to be applied. Moreover, 
default behavior when no response is received (after a FIN scan on an open port as an 
example) is to retry 7 additional times. This behavior explains the 1066 packets 
generated by hping during FIN and XMAS scans. 

In the same situation (FIN or XMAS scan), nmap replays once the scan for non 
responding (ope,) ports. However,, nmap looks less reliable as the number of packets 
generated is more or less random. This means that packets are more often considered 
as lost, even in the case of “connect” scans. 

Below is an example of a FIN scan launched with nmap and an extract of the tcpdump 
capture performed during the scan. In this capture the positives responses (means no 
reply for the target) have been highlighted. 

 
[root@localhost ~]# nmap -sF -p 1-1024 10.0.0.101 

 

Starting Nmap 4.20 ( http://insecure.org ) at 2007- 10-18 09:24 CEST 

Interesting ports on 10.0.0.101: 

Not shown: 1018 closed ports 

PORT    STATE         SERVICE 

22/tcp  open|filtered ssh 

80/tcp  open|filtered http 

111/tcp open|filtered rpcbind 

113/tcp open|filtered auth 

199/tcp open|filtered smux 

443/tcp open|filtered https 



Mitigating Scanners and Crackers 

p.21 

 

Nmap finished: 1 IP address (1 host up) scanned in 1.392 seconds  

Figure 7 : Nmap FIN scan 
 
[root@localhost ~]# tcpdump host 10.0.0.101 and hos t 192.168.205.163 

tcpdump: verbose output suppressed, use -v or -vv f or full protocol decode 

listening on eth0, link-type EN10MB (Ethernet), cap ture size 96 bytes 

09:26:53.057502 IP 192.168.205.163.45356 > 10.0.0.1 01.auth: F  

09:26:53.057667 IP 192.168.205.163.45356 > 10.0.0.1 01.114: F  

09:26:53.057816 IP 192.168.205.163.45356 > 10.0.0.1 01.poppassd: F  

09:26:53.057960 IP 192.168.205.163.45356 > 10.0.0.1 01.mcidas: F  

09:26:53.058048 IP 10.0.0.101.114 > 192.168.205.163 .45356: R 0:0(0) ack  

09:26:53.058196 IP 192.168.205.163.45356 > 10.0.0.1 01.pop3: F 

09:26:53.058321 IP 10.0.0.101.poppassd > 192.168.20 5.163.45356: R 0:0(0) ack 

09:26:53.058424 IP 10.0.0.101.mcidas > 192.168.205. 163.45356: R 0:0(0) ack 

09:26:53.058569 IP 192.168.205.163.45356 > 10.0.0.1 01.sunrpc: F  

09:26:53.058649 IP 10.0.0.101.pop3 > 192.168.205.16 3.45356: R 0:0(0) ack 

09:26:53.058771 IP 192.168.205.163.45356 > 10.0.0.1 01.snagas: F 

09:26:53.058912 IP 192.168.205.163.45356 > 10.0.0.1 01.csnet-ns: F 

09:26:53.059054 IP 192.168.205.163.45356 > 10.0.0.1 01.rtelnet: F 

09:26:53.059194 IP 192.168.205.163.45356 > 10.0.0.1 01.sftp: F 

09:26:53.059242 IP 10.0.0.101.snagas > 192.168.205. 163.45356: R 0:0(0) ack 

09:26:53.059409 IP 10.0.0.101.csnet-ns > 192.168.20 5.163.45356: R 0:0(0) ack 

09:26:53.059561 IP 10.0.0.101.rtelnet > 192.168.205 .163.45356: R 0:0(0) ack 

09:26:53.059689 IP 10.0.0.101.sftp > 192.168.205.16 3.45356: R 0:0(0) ack 

09:26:53.061406 IP 192.168.205.163.45356 > 10.0.0.1 01.pop2: F  

09:26:53.061770 IP 10.0.0.101.pop2 > 192.168.205.16 3.45356: R 0:0(0) ack 

09:26:54.165528 IP 192.168.205.163.45357 > 10.0.0.1 01.sunrpc: F 

09:26:54.165552 IP 192.168.205.163.45357 > 10.0.0.1 01.auth: F 

Figure 8 : Nmap FIN scan capture 



Mitigating Scanners and Crackers 

p.22 

 

Identification tools 
Operating systems identification tools 

The most popular and reliable technique to identify remote operating systems is to 
generate and compare network stack fingerprints. However in some cases (just like 
THCrut [thcrut]) banners can be analyzed, as well as combinations of closed and open 
ports. 

• Nmap OS identification 

Nmap fingerprints are based on the following tests and characteristics : 

- Support of TCP options in different orders : 

- WS1, MSS2, TSV3, TSER4 

- MSS, WS, TSV, TSER 

- TSV, TSER, WS, MSS 

- TSV, TSER, WS 

- MSS, TSV, TSER, WS 

- MSS, TSV, TSER 

- TCP protocol behavior : 

- Initial sequence number (ISN) generation algorithm 

- TCP window size 

- Response to : 

o SYN, ECN5, CWR6 packet on open port 

o NULL flags packet on open port 

o SYN, FIN, PSH, URG packet on open port 

o ACK packet on closed port 

o FIN, PSH, URG packet on closed port 

- ICMP specificities : 

- ICMP message quoting :  

o ICMP echo reply : 120 and 150 bytes NULL (0x00) data in ICMP echo 
request 

o ICMP port unreachable : 300 bytes data in UDP packet to closed port 

                                                
1 Window Scale [RFC1323] 
2 Maximum Segment Size [RFC793] 
3 Timestamp Value [RFC1323] 
4 Timestamp Echo Reply [RFC1323] 
5 Explicit Congestion Notification Echo  [RFC3168] 
6 Congestion Window Reduced [RFC3168] 



Mitigating Scanners and Crackers 

p.23 

- DF flag support in ICMP echo request 

An extract of the packet capture is provided below. 

 

 
Figure 9 : Nmap OS scan capture 

 

• Xprobe2 OS identification 

Xprobe has been created in order to test ICMP stacks and identify OS based on their 
support of different ICMP packets and options. Since version 0.3 additional tests has 
been performed in order to makes analysis more accurate; it is now possible to check 
SNMP sysObjectID, or Netbios banners to make identification more accurate. 

Moreover a lot of scan and network mapping modules have been added to Xprobe, 
making it a more generic scanner than it used to be. 

In terms of fingerprinting 9 modules are used. 

• 5 ICMP based tests:  

a. Echo request message quoting and miscellaneous IP parameters (IPID, 
TOS, TTL) 

b. Timestamp request support 

c. Address mask request support 

d. Port unreachable message quoting  

e. Information request support 

• 2 TCP based tests: 

f. Connection to an open port. MSS, TSV, TSer, WS TCP options support on 
an open port, DF option support and miscellaneous TCP parameters, such 
as TCP window size, sequence numbers ackloedgement etc.  



Mitigating Scanners and Crackers 

p.24 

g. Packet sent to a closed port, checks for DF option support and IPID 
strategy. 

• 2 application based test: 

h. SMB NULL session, makes it possible to grab windows information 

i. SNMP get for sysDescr information 

 

As described in their whitepaper [xprobe-wp] Xprobe is using a fuzzy engine in order to 
evaluate the type of OS running on a target system. Therefore results are provided with a 
probability of success that makes the tool more resistant to security measures that would 
alter the behavior of the target. Below is a sample run of Xprobe. 

 
[root@localhost ~]# xprobe2 -p tcp:3:CLOSED -p tcp: 443:open -p udp:1:closed -p udp:135:open 
-p udp:161:open -p tcp:139:open 10.0.0.106 -v -D 1 -D 2 -D 3 -D 4 -D 5 

 

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu , ofir@sys-security.com, meder@o0o.nu 

 

[+] Target is 10.0.0.106 

[+] Loading modules. 

[+] Following modules are loaded: 

[x] [1] fingerprint:icmp_echo  -  ICMP Echo request  fingerprinting module 

[x] [2] fingerprint:icmp_tstamp  -  ICMP Timestamp request fingerprinting module 

[x] [3] fingerprint:icmp_amask  -  ICMP Address mas k request fingerprinting module 

[x] [4] fingerprint:icmp_info  -  ICMP Information request fingerprinting module 

[x] [5] fingerprint:icmp_port_unreach  -  ICMP port  unreachable fingerprinting module 

[x] [6] fingerprint:tcp_hshake  -  TCP Handshake fi ngerprinting module 

[x] [7] fingerprint:tcp_rst  -  TCP RST fingerprint ing module 

[x] [8] fingerprint:smb  -  SMB fingerprinting modu le 

[x] [9] fingerprint:snmp  -  SNMPv2c fingerprinting  module 

[+] 9 modules registered 

[+] Initializing scan engine 

[+] Running scan engine 

[+] All alive tests disabled 

[+] Target: 10.0.0.106 is alive. Round-Trip Time: 0 .00000 sec 

[+] Selected safe Round-Trip Time value is: 10.0000 0 sec 

[+] SMB [Native OS: Windows Server 2003 3790] [Nati ve Lanman: Windows Server 2003 5.2] 
[Domain: LAB] 

[+] SMB [Called name: LAB6           ] [MAC: 00:01: 02:da:83:cf] 

[+] Primary guess: 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2003 Server Standard Edition" (Guess 
probability: 100%) 

[+] Other guesses: 



Mitigating Scanners and Crackers 

p.25 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2003 Server Enterprise Edition" (Guess 
probability: 100%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Workstation" (Guess probability: 
95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Workstation SP1" (Guess 
probability: 95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Workstation SP2" (Guess 
probability: 95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Workstation SP3" (Guess 
probability: 95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Workstation SP4" (Guess 
probability: 93%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Server" (Guess probability: 95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Server Service Pack 1" (Guess 
probability: 95%) 

[+] Host 10.0.0.106 Running OS: "Microsoft Windows 2000 Server Service Pack 2" (Guess 
probability: 95%) 

[+] Cleaning up scan engine 

[+] Modules deinitialized 

[+] Execution completed. 

Figure 10 : Xprobe run 
 

• THCrut OS scan 

THCrut fingerprints are based on combinations of open and closed ports. On top of it the 
tool analyzes banners grabbed from different applications to makes it results more 
accurate. However, a bug in the SNMP implementation often makes the use of this 
protocol useless. 

Tests performed to identify operating systems are the following: 

• Tests for ports status 

a. MS Windows ports : TCP/139, TCP/135, TCP/445, UDP/135 

b. Unix port : TCP/22 

c. Cisco port : TCP/2001, TCP/6001 

• Tests for banners 

a. FTP 

b. SSH 

c. SMTP 

• Test for application data 

a. Web 

b. SNMP 

c. Telnet 

These tests are explicitly reported in the verbose mode of THCrut, as show below. 



Mitigating Scanners and Crackers 

p.26 

 
[root@localhost bin]# thcrut discover -v -O 10.0.0. 105 

thcrut: listening on eth0 

thcrut: using source ip 192.168.205.163 

Host: 10.0.0.105 0.1.1.5(136448, 00000000.00000010. 00010101.00000000) 3 Windows 
XP 

-----BEGIN THCRUT FINGERPRINT----- 

139T=O%135T=O%445T=O%22T=C%2001T=C%6001T=C% 

135U=O% 

21B="" 

22B="" 

25B="220 lab5 Microsoft ESMTP MAIL Service, Version : 5\.0\.2195\.1600 ready at  
Tue, 23 Oct 2007 14:13:17 \+0200 \r\n" 

80W=" Microsoft-IIS/5.0" 

161S="" 

23N="" 

-----END THCRUT FINGERPRINT----- 

10 packets received by filter, 0 packets dropped by  kernel 

Figure 11 : THCrut run with fingerprint details 
 

• Sinfp OS scan 

Sinfp [sinfp] specificity is to only generate probes to an open port, making it more stealth 
and difficult to detect. Moreover fingerprints are generated thanks to only 3 tests: 

• 2 SYN packets to evaluate multiple TCP stack characteristics : options support 
(MSS, TSV, TSER, WS), window size, ISN etc. 

• 1 ACK packet sent to have the targeted system generate a RST, used to analyze 
IP and TCP characteristics, such as the DF flag support. 

The main characteristic of this tool is that the whole fingerprinting operation is performed 
with no more than 8 packets, as shown in the capture below. 

 
Figure 12 : sinfp scan capture 

 
• OS scanners metrics 

Our analysis doesn’t focus on the reliability and success rate of OS scanners, but on their 
behavior. Therefore the result table will not include results obtained by the four tools 
analyzed above, but the protocol used, packets sent and received as well as the global 
packet rate generated by the scan.  



Mitigating Scanners and Crackers 

p.27 

 

Table 4 : OS scan protocol distribution 
 

 Nmap Xprobe2 THCrut Sinfp 

Bytes 69% 58% 74% 100% 
TCP 

Packets 86% 62% 83% 100% 

Bytes 9% 27% 15% 0% 
UDP 

Packets 2% 16% 12% 0% 

Bytes 22% 15% 11% 0% 
ICMP 

Packets 12% 22% 5% 0% 

 

 

Table 5 : OS scan rate based characteristics 
 

 Nmap Xprobe2 THCrut Sinfp 

Scan duration (s) 11,5 22 8 <1 

Incoming 
TCP 4340 747 2521 198 

UDP 0 632 558 0 

ICMP 2120 228 0 0 

Total 6460 1607 3079 198 

Bytes 

Bps 562 73 385 NA7 

TCP 62 8 19 3 

UDP 0 3 3 0 

ICMP 15 3 0 0 

Total 77 14 22 3 

Packets 

Pps 7 <1 3 NA 

Outgoing 
TCP 8170 1119 1708 290 

UDP 1710 295 262 0 

ICMP 1770 240 642 0 

Total 11650 1654 2612 290 

Bytes 

Bps 1013 75 326 NA 

                                                
7
 These values are not relevant given the low number of packets and data generated 

 



Mitigating Scanners and Crackers 

p.28 

TCP 123 12 27 6 

UDP 5 3 3 0 

ICMP 10 4 3 0 

Total 138 19 33 6 

Packets 

Pps 12 <1 4 NA 

Global 
Bps 1575 148 711 NA 

PPS 89 1,5 7 NA 

 

Application identification tool 

Analysis of tools designed to identify applications is quite complex, as some of them are 
very generic and used to identify multiple applications, while some others are dedicated 
to one type of application. Moreover techniques used to identify precisely the nature of a 
SIP capable device are very different from those used for HTTP or SSH servers. 

In order to get a broad view of scanners techniques and characteristics, we will analyze 
the behavior of three generic scanners, amap [amap] and nmap [nmap], three HTTP 
dedicated scanners, httprint [httprint], hmap [hmap] and nikto [nikto]. 

• Generic scanners 

Amap and nmap are very different as the first one relies on signatures while nmap only 
grabs banner to provide remote application identification.  

Amap identification process mainly relies on two mechanisms, triggers and responses. 
Triggers are data to be sent to specified ports while responses are, obviously, data sent 
back by the remote application. Most triggers and responses are unrelated. Therefore 
any data sent to an open port may return a response which is known as specific to an 
application type, and the remote application will be identified as such. This creates more 
flexibility as a request doesn’t necessarily have to be at the “perfect” format. Moreover it 
makes it possible to identify applications thanks to error messages. 

Below are some examples of triggers and responses as specified in the appdefs.trig and 
appdefs.resp files [appdefs].  

Triggers are defined with the following format :  
NAME:[COMMON_PORT,[COMMON_PORT,...]]:[IP_PROTOCOL]: 0|1:TRIGGER_STRING 

Most values are optional and self explanatory. The COMMON_PORT values are to be used if 
one specific option (-1) is set, otherwise the trigger will be sent on all ports set for testing. 
The 0|1  parameters stands for a “harmful” flag and is mandatory.  

 
http-get:80,81,82,8000,8080,8081,8888:tcp:0:"GET / HTTP/1.0\r\n\r\n" 

http-head:80,81,82,8000,8080,8081,8888:tcp:0:"HEAD / HTTP/1.0\r\n\r\n" 

http-proxy-ident:80,81,82,8000,8080,8081,8888:tcp:0 :"TRACE HTTP://localhost 
HTTP/1.0\r\n\r\n" 

http-trace:80,81,82,8000,8080,8081,8888:tcp:0:"TRAC E / HTTP/1.0\r\n\r\n" 



Mitigating Scanners and Crackers 

p.29 

Figure 13 : amap triggers for http 
 

Responses are specified with the format: 
NAME:[TRIGGER,[TRIGGER,...]]:[IP_PROTOCOL]:[MIN_LEN GTH,MAX_LENGTH]:RESPONSE_REGEX 

The TRIGGER is optional and means that this response is to be considered only if it is 
linked to the specified trigger. RESPONSE_REGEXP is a regular expression using the PERL 
format (perlre). 
http-iis::tcp::^HTTP/.*\nServer: Microsoft-IIS 

http-iis::tcp::^HTTP/.*Cookie.*ASPSESSIONID 

http-iis::tcp:34:^<h1>Bad Request .Invalid URL.</h1 > 

http-iplanet::tcp::^HTTP/.*Cookie.*iPlanetUserId 

http-daap-itunes::tcp::^HTTP/.*\nDAAP-Server: iTune s/ 

http-jrun::tcp::^HTTP/.*Cookie.*JSESSIONID 

http-jserv::tcp::^HTTP/.*Cookie.*JServSessionId 

Figure 14 : amap responses for some http servers 
 

On the opposite nmap uses a trivial banner echoing mechanism to provide version 
information about targeted applications. Although this technique is easy to fool, it doesn’t 
need updates, which is a great advantage. 

Below is an example of a nmap run. 

 
[root@localhost ~]# nmap -A -P0 -p21,25,80,135,443, 3306 10.0.0.105 

Starting Nmap 4.20 ( http://insecure.org ) at 2007- 10-24 12:55 CEST 

Interesting ports on 10.0.0.105: 

PORT     STATE SERVICE    VERSION 

21/tcp   open  tcpwrapped 

25/tcp   open  smtp       Microsoft ESMTP 5.0.2195. 1600 

80/tcp   open  http       Microsoft IIS webserver 5 .0 

135/tcp  open  msrpc      Microsoft Windows RPC 

443/tcp  open  ssl/http   Microsoft IIS webserver 5 .0 

3306/tcp open  mysql      MySQL 5.0.37-community-nt  

Figure 15 : nmap run for application identification 
 

In terms of statistics, the number of TCP sessions established by the scanning source 
maybe of some interest, in addition to standard metrics such as number of packets, 
bandwidth etc. 

Table 6 : Generic application scanners metrics 
 

 amap Nmap 

Scan duration (s) 50 30 



Mitigating Scanners and Crackers 

p.30 

Global traffic 
Outgoing 1085 22 190 6 

Incoming 808 16 115 4 
Packets 

Total / Rate 
Global 1.893 38 305 10 

Outgoing 92.265 1.845 15.073 502 

Incoming 96.156 1.923 13.219 441 
Bytes 

Total / Rate 
Global 188.421 3.768 28.292 943 

Per application analysis 
FTP 28 NA 22 NA 

SMTP 28 NA 3 NA 

HTTP 84 NA 7 NA 

MSRPC 28 NA 3 NA 

HTTPS 56 NA 5 NA 

Sessions 

Total / Rate 

MYSQL 28 NA 2 NA 

FTP 12.624 252 10.538 351 

SMTP 25.335 507 1.064 35 

HTTP 21.006 420 1.917 64 

MSRPC 19.647 393 1.558 52 

HTTPS 94.135 1.883 6.722 224 

Bytes 

Total / Rate 

MYSQL 19.788 396 1.077 35 

 

• HTTP dedicated scanners 

Dedicated scanners use specific techniques to identify the very nature of an application. 
On one hand it limits the scope of application, but on the other hand it should provide 
more accurate results and less “noise”.  

The most basic scanner of this family is Nikto. It simply relies on the analysis of the 
banner received and the behavior of the server responding to two HEAD requests, one of 
them specifying a total length of 0. The main characteristic of this scanning technique is 
that it generates no error and a very limited (only 2) number of requests. 

On the other hand httprint and hmap are far more noisy, as they respectively establish 22 
and 171 sessions to generate the footprint of the remote web server. Typical tests 
performed to generate the fingerprint are : 

• Support of uncommon but legitimate (according to standards) commands, such as 
OPTIONS, PUT, TRACE etc. 

• Reaction to an erroneous request : 

- Bad command 

- Non HTTP data sent or bad request formatting 

- Bad protocol name or version 



Mitigating Scanners and Crackers 

p.31 

• Behavior in extreme conditions 

- Large URI 

- Repetitive schema in URL 

 

Below are a few examples of tests performed by httprint and amap against an IIS 5.0 and 
an Apache 2 server. Below the figures shows the results of two hmap runs against those 
two different servers.  

Table 7 : HTTP fingerprint samples 
 

Request IIS 5.0 Apache 2.0.52 

Httprint 

GET / JUNK/1.0 400 Bad Request 200 Ok 

get / http/1.0 400 Bad Request 501 Not implemented 

POST / HTTP/1.0 405 Method Not Allowed 200 Ok 

GET /cgi-bin/ 404 Not Found 403 Forbidden 

Hmap 

MKCOL / HTTP/1.0 403 Forbidden 405 Method Not Allowed 

PROPFIND / HTTP/1.0 411 Length Required 405 Method Not Allowed 

GET 400 Bad Request Non HTTP response 

GET / HTTP/999.99 200 Ok 400 Bad Request 

 

 
[root@localhost hmap]# python hmap.py http://10.0.0 .101:80 

gathering data from: http://10.0.0.101:80 

 

                                     matches : mism atches : unknowns 

Apache/2.0.40 (Red Hat 8.0)              110 :          4 :   9 

Apache/2.0.44 (Win32)                    109 :          5 :   9 

IBM_HTTP_Server/2.0.42 (Win32)           108 :          6 :   9 

Apache/1.3.9 (Win32)                     107 :          8 :   8 

Apache/1.3.12 (Win32)                    107 :          8 :   8 

Figure 16 : hmap run against Apache 2 
 
[root@localhost hmap]# python hmap.py http://10.0.0 .105:80 

gathering data from: http://10.0.0.105:80 

 

                                     matches : mism atches : unknowns 

Microsoft-IIS/5.0 (Win32)                  102 :  1 4 :   7 

Apache/1.3.23 (RedHat Linux 7.3)            53 :  6 2 :   8 



Mitigating Scanners and Crackers 

p.32 

Apache/1.3.27 (Red Hat 8.0)                 53 :  6 2 :   8 

Apache/2.0.44 (Win32)                       51 :  6 4 :   8 

Apache/1.3.26 (Solaris 8)                   51 :  6 4 :   8 

Figure 17 : hmap run against IIS 5.0 
 

However, the number and rate of requests are not the only metrics of interest as they 
may not be so uncommon. On the other hand the number of errors (or uncommon 
response codes) may be a valuable piece of information. 

 
Table 8 : HTTP identification scanners metrics 

 

 Nikto  httprint Hmap 

 IIS 5.0 Apache 2 IIS 5.0 Apache 2 IIS 5.0 Apache 2 

Scan duration (s) 0,007 0,004 10 0,040 24 59 

HTTP Sessions 2 2 22 22 171 199 

Responses 

OK 2 2 9 11 58 62 

3xx 0 0 0 0 0 0 

4xx 0 0 9 8 89 81 

5xx 0 0 1 2 18 12 

Non-http 0 0 3 1 6 44 

TOTAL 0 0 13 11 113 137 

Errors 

Proportion 0% 0% 59% 50% 66% 69% 

 

These results logically vary from on system to another, as this is the very mechanism 
which the fingerprinting technique relies on.  However, results clearly show that globally 
the scale remain the same in terms of error proportion. 



Mitigating Scanners and Crackers 

p.33 

 

Cracking tools 
The term cracking tools includes many different kind of tools. Most common ones are 
vulnerability scanners. Used to identify systems weaknesses they are widely used by 
malicious individuals, automated worms as well as security administrators. 

However, it is also interesting to focus on two other categories of tools : mass generators 
and attack tools. Tools that belong to those two categories are real malicious tools that 
will actively compromise remote systems’ security. 

Therefore being able to block these tools is an essential step to maintain the security of 
any IT infrastructure. 

Vulnerability scanners 

Vulnerability scanners are designed to perform several tests in a more or less subtle way. 
In some cases, tools will be able to identify the remote system first and then launch only 
appropriate tests. In other cases, the user will have to specify the type of target to 
analyze. Last, some tools will blindly launch any kind of attack they know and check the 
exposure of the target. 

On top of these operational differences each and every vulnerability scanner uses 
different techniques to perform their tests. Some will compare version numbers with a 
database of known vulnerabilities, some other will evaluate response to specific stimuli, 
other will launch real attacks. Therefore statistics and analysis cannot rely on specific test 
techniques but on more generic characteristics. 

In order to illustrate those differences we analyzed 3 different scanners, Nessus [nessus], 
nikto [nikto] and NTOinsight [ntotools]. 

• Operation modes 

Nessus 

Nessus is probably the most famous security scanner freely available. Relying on a real 
client-server architecture it has a professional design from the very start, about ten years 
ago.  

Nessus is provided with “plugins” that makes it totally autonomous. However it can get 
information from external tools such as nmap or amap. During the scanning process 
Nessus launches a few port scan probes then focuses on the exploitation of 
miscellaneous possible vulnerabilities. 

These tests can be classified in 6 categories 

1. Identification and information grabbing based on public information and methods, 
such as banner grabbing, robot.txt analysis etc. 

2. Identification of supported commands, such as TRACE, PROPFIND etc. 

3. Dictionary attack to discover common directories, such as /backup , /admin , 
/include  etc. 

4. Research of known vulnerable scripts and applications such as awstat.pl , 
smb2www.pl , phorum.php  etc. 



Mitigating Scanners and Crackers 

p.34 

5. Blind exploit attempts of known vulnerabilities such as : 

- Directory crossing :  
/cgi-bin/view_source?../../../../../../../../../etc /passwd  

- Cross-site scripting :  
/scripts/user.cgi?url=">%3Cscript%3Ealert("gossamer _links_ur
l_xss.nasl")%3B%3C%2Fscript%3E&from=add 

- Global variables tampering 
/calendar.php?serverPath=/etc/passwd%00 

- SQL injections :  
/cgi-bin/SPT--ForumTopics.php?forumid=-
9%20UNION%20SELECT%20null%2cnull%2cnull%2c119462296 3%2c4%2c5 

6. Targeted exploits attempts : 

- Research of hidden or old files :  
GET /cgi-bin/badstore.cgi.old HTTP/1.1\r\n 

- SQL injections on GET parameters in URL :  
GET /cgi-bin/badstore.cgi?-=&action='+OR+1=1# HTTP/ 1.1\r\n 

One the main characteristics of Nessus HTTP scans is that it heavily uses HTTP 1.1 
capability to pipeline multiple requests in a single TCP sessions. During the scan Nessus 
pipes 101 requests per TCP sessions. This saves resources and makes scan faster.  

 

Nikto 

Nikto is a far more basic tool wrote in PERL that performs simple operations based on 
the following mechanisms. 

1. Grab server banner and define a generic category for the server, based on strings 
returned in the response to a HEAD request. Categories and matching strings are 
defined in the server.db  file. 

 

################################################### ##################### 
# Server categories: "category","match-string" 
################################################### ##################### 
"abyss","abyss" 
"alchemyeye","Alchemy Eye" 
"apache","apache" 
"apache","apache-coyote" 
"apache","infrastructure" 
"apache","jakarta" 
"apache","tomcat" 
"apache","IBM_HTTP_SERVER" 
"cern","cern" 

Figure 18 : extract of server.db 
 



Mitigating Scanners and Crackers 

p.35 

2. Evaluate web servers exposure to known vulnerabilities by comparing version 
information and vulnerability database. This operation is static and each and 
every vulnerability is hard coded in the file server_msg.db. The format is simple : 
<server_string_regexp> <vulnerability_description> . Below is a sample 
entry of the file. 

 
"Apache\/(1\.2\.([2-9].*|1[0-9])|1\.3\.([0-1].*|2[0 -4]))","Apache 1.x up 
1.2.34 are vulnerable to a remote DoS and possible code execution. CAN-
2002-0392." 

Figure 19 : server-msg.db sample entry 
 

3. Test for potential vulnerabilities in scripts. As of today all tests are blindly 
launched to the target. However, the format of the file scan_database.db  implies 
that there is (or was) a plan to make tests more accurate. Indeed each line of the 
file has the following format :  
<category> , <URL> , <response_string> , <http_comm and> , 

<vulnerability_description> . 

In the current file, the category field is always set at “generic”. All those tests are 
hard coded and the only potential variation is the manual setting for CGI 
directories that can be specified via the command line option –Cgidirs.  

4. Default password attacks based on blind and targeted attempts, based on the 
authentication realm required by the server. These tests are defined in the 
realms.db  file. 

Additionally Nikto implements evasion techniques, based on URL encoding and makes it 
possible to create plugins.  However, only a few of them have been developed and are 
part of the original distribution. 

 

NTOInsight 

NTOInsight is a little bit different as it performs web site analysis on top of a Nikto-based 
vulnerability scan. This web analysis provides information for further exploitation attempts 
based on application specific attack points. These attack points are web pages serving 
the following kind of content: 

- Forms; 

- Query strings (parameters embedded in the URL) 

- Authentication page; 

- Cookies; 

- Scripts; 

- Hidden fields; 

- Applets; 

- Email. 

 



Mitigating Scanners and Crackers 

p.36 

For each and every attack point NTOInsight provides a full report detailing parameters 
name, request targets, cookies name and values etc. Below is the detail of one attack 
point detected by NTOinsight. 

 

 
Figure 20 : Attack point detail 

 

• Attack metrics 

Once again the number of request and the rate at which they are generated are not 
necessarily relevant as they may not be particularly uncommon, especially on popular 
sites and compared to traffic generated by meta-proxies. 

For this reason we will focus on application level information such as the number of 
request and the success rate.  

 

Table 9 : Vulnerability scanners metrics 
 

 Nessus Nikto NTOInsight 

Scan duration (s) 88 300 95 

HTTP Requests 3858 16729 2387 

Requests/s 43 55 25 



Mitigating Scanners and Crackers 

p.37 

Responses 

OK 83 64 26 

3xx 7 1 0 

4xx 3658 16652 2358 

5xx 1 6 3 

Non-http 109 6 0 

TOTAL 3775 16665 2361 

Errors 

Proportion 98% 99% 99% 

 

Whatever is the technique used, and whenever deep investigation is performed on the 
web site, ratios are all quite the same and very unlikely to be commonly found in “normal” 
users behaviors. 

Mass generators and attack tools 
• Password crackers 

Most interesting and common mass generators are password crackers, used to perform 
thousands of tests against authentication mechanisms and “guess” login credentials. 
Guesses are usually done via two techniques : dictionary and brute force attacks. 

Dictionary attacks rely on the use of big word files (commonly over one million words) to 
test as login and passwords. According to the context these files can be generic, usually 
for the password, or specially crafted to fit username formats. Attacks to test known 
default login / password pairs are obviously based on this technique. The main 
advantage of such technique is that it is relatively quick (a few hours are enough to test 
for hundreds of thousand combinations) and can be efficient if users don’t apply basic 
security rules in the choice of their passwords. Moreover a smart attacker will try to 
narrow the range of possible passwords by using language specific dictionaries and 
including context related words, such as the company name, personal information etc. 
On the other hand the range of test is not exhaustive and complex passwords will remain 
undiscovered. 

Brute force attacks will try any possible combination of a set of character. Therefore the 
only choice to do is that of a range of possible characters that may be in the password. 
Of course the larger is the character set the longer will be the cracking operation. 
Eventually most of inline brute force operations are limited to a set of 62 characters, 
which are 10 numbers and 2x26 letters (lower and upper case). In such schema, the 
brute force attack is not much more efficient than dictionary attacks but far slower. That’s 
the main reason why there are not much of these tools for inline cracking. 

Whatever technique is used, the most obvious characteristic of password cracking 
operations is that the ratio of authentication failures will be close to 99%. Therefore the 
interesting metric is immediately found. Other criteria, such as packet rates or bandwidth 
will, once again, not appear as really noticeable, especially on “popular” applications 
during rush hours. As an example, a huge amount of authentication request at 09:00 am 
on a corporate mail server (POP or IMAP) is usually not to be considered as suspicious. 



Mitigating Scanners and Crackers 

p.38 

• Attack tools 

Attack tools are the ultimate automation step, that makes hacking faster and easier. The 
most popular attack tool is Metasploit [metasploit]. This tool will launch a an attack that 
has been specified and automate the exploitation process so that the “user” doesn’t have 
to perform any complex operations, such as creating a new user, uploading a malicious 
software, or even loading a graphical server in the compromised system memory… 
leaving almost no trace of the intrusion. However, Metasploit and the likes just launch a 
single attack and cannot really be considered as scanners or crackers. 

On the other hand the exploitation of some potential vulnerability can be quite long and 
require many tries in order to exactly match the target system specificities. This is 
especially the case of SQL injections, where quoting, commenting and even performing 
simple operations such as JOINT or UNION is always system specific. In this case tools 
like SQLiX [sqlix] will perform multiple tries automatically to find if the system is 
vulnerable and the way the vulnerability can be exploited. 

However, if the checks are automated, the user has to specify which field he wants to 
test. In this situation, the investigation performed by scanners such as NTOinsight, 
analyzed before, is very valuable as it provides all the potential vulnerable fields. 

Below is a sample run of SQLiX. 

 
[root@localhost SQLiX_v1.0]# ./SQLiX.pl -v=2 -url=" http://10.0.0.205/cgi-
bin/badstore.cgi?action=login&passwd=a&email=a" -ex ploit -all 
=================================================== === 
                   -- SQLiX -- 
 © Copyright 2006 Cedric COCHIN, All Rights Reserve d. 
=================================================== === 
 
Analysing URL [http://10.0.0.205/cgi-
bin/badstore.cgi?action=login&passwd=a&email=a] 
  http://10.0.0.205/cgi-bin/badstore.cgi?action=log in&passwd=a&email=a 
         [+] working on action 
                 [+] Method: MS-SQL error message 
                 [+] Method: SQL error message 
                 [+] Method: MySQL comment injectio n 
                 [+] Method: SQL Blind Statement In jection 
                 [+] Method: SQL Blind String Injec tion 
         [+] working on passwd 
                 [+] Method: MS-SQL error message 
                 [+] Method: SQL error message 
                 [+] Method: MySQL comment injectio n 
                         [ERROR] Parameter doesn't impact content 
                 [+] Method: SQL Blind Statement In jection 
                         [ERROR] Parameter doesn't impact content 
                 [+] Method: SQL Blind String Injec tion 
                         [ERROR] Parameter doesn't impact content 
         [+] working on email 
                 [+] Method: MS-SQL error message 
                 [+] Method: SQL error message 
                         [FOUND] Match found INPUT: ['] - "You have an error in 
your SQL syntax" 
                         [INFO] Error with quote 
                         [INFO] Database identified : MySQL Server 



Mitigating Scanners and Crackers 

p.39 

                         [INFO] Current function: v ersion() 
                         [INFO] length: 14 
                                 4.1.7-standard 
                         [FOUND] SQL error message 
 
RESULTS: 
The variable [email] from [http://10.0.0.205/cgi-
bin/badstore.cgi?action=login&passwd=a&email=a] is vulnerable to SQL Injection 
[Error message (') - MySQL]. 

Figure 21 : SQLiX run 
 

One of the particularities of SQLiX is its native capability to obfuscate its attacks packets. 
An example of an obfuscated attack on the email field is provided below. 

 
GET /cgi-
bin/badstore.cgi?action=login&passwd=a&email=1'%2B1 %20regexp%20IF((ascii(substri
ng(version()%2C12%2C1))%3E%3E(4)%261)%2Cchar(42)%2C 1)%20AND%201%3D1%2B' 
HTTP/1.1\r\n 

Figure 22 : SQL injection obfuscated by SQLiX 
 

This attack aims at retrieving the version number of the database, through a field 
vulnerable to the basic ‘ OR 1  SQL injection. In this specific request, SQLiX is going to 
check the value of the 5th bit of the 12th character of the version string. Most of special 
characters, like commas, + or > signs are encoded in hexadecimal. This test is performed 
by the following functions :  

 Function(1) : ascii(substring(version(),12,1))>>(4 )&1  

- version()  returns a string with the version number  

- substring(version(),12,1)  return the 12th character 

- ascii(substring(version(),12,1))  return the numeric value of the character  

- ascii(substring(version(),12,1))>>(4)  right shifts 4 bits  

- ascii(substring(version(),12,1))>>(4)&1 checks if the rightmost bit equals 1 

 

Function (2) : IF(ascii(substring(version(),12,1))> >(4)&1,*,1) 

A IF control is operated (Function 2), it will return *  if the result of Equation 1 is TRUE (1) 
and 1 if the result is FALSE. 

Then a pattern matching is performed between the string 1 and the result of the IF 
condition, via the regexp function (Funtion 3).  

Function (3) : 1 regexp IF(ascii(substring(version( ),12,1))>>(4)&1,*,1) 

 

 

Therefore there are two possibilities : 

1. 1 regexp *  : generates an SQL error 



Mitigating Scanners and Crackers 

p.40 

2. 1 regexp 1  : returns 1 

Eventually the injection ends in a simple form if the result of Equation 1 is TRUE: 
email=1’ 1 AND 1’ , While a result of FALSE will generate an SQL error and serve a 
different page. 

In terms of metrics the main problem is that there is no major difference between a 
successful check and an error, as all of them will return a HTTP 200 OK code but with 
different contents, as shown in Figures below. 

 

 
Figure 23 : SQL injection response with valid SQL 

 

 



Mitigating Scanners and Crackers 

p.41 

 
Figure 24 : SQL injection response with invalid SQL 



Mitigating Scanners and Crackers 

p.42 

 

Mitigating the threat 

The challenge of mitigation 
Axis of research 

Blocking mass scanning and cracking activities will noticeably increase the security level 
of an IT infrastructure as it will become capable of defend itself against most automated 
tools, would they be autonomous, like worms, or used to quickly gather information and 
perform (in)security checks, like would do a malicious user. 

Designing a system able to detect and block such threats makes it necessary to identify 
common criteria. From this point it should be possible to analyze potential anomalies and 
create an engine, based on network metrics “behavior”.  

Another challenge is the capability to evaluate the efficiency of such engine, and to 
understand its limitations. 100% security is illusory, but weaknesses in the security are 
acceptable as long as they are identified. Therefore it becomes mandatory to understand 
the limits of the system we would design. 

The need for new technologies 

One of the most obvious characteristics of scanners and crackers is their flexibility. As an 
example the nmap “ping”, designed to identify the status of networked systems, can be 
performed via 3 mechanisms: ICMP, ICMP + TCP, TCP only. Nessus identifiers, such as 
the username used for authentications or the User-Agent of the internal web client, can 
be changed by the user. In the case of non-public malicious software, such as worms, 
there are even more variants and one can bet that scan packets generated by two 
different worms or bots will not have any common content. 

Therefore it is clear that prevention technologies based on simple pattern matching and 
accurate threat recognition cannot be efficient on a large scale, for at least two reasons. 
The first one is that known tools, bots and worms (and their main variants), would already 
involve thousands of “signatures” for their accurate detection. On top of it there is no 
obsolete signature as a port scanner or a password cracker remains efficient as long as 
the supporting protocols (IPv4 suite today) are used. This huge amount of detection 
patterns will necessarily impact performances.  

The second reason is that one of the characteristics of these threats the rapidity of their 
propagation. The more quickly they propagate, the more system will be compromised 
before the tool or code gets analyzed and a signature is found. Malicious code 
propagation is obviously faster than signature design and deployment. Therefore any 
signature-based protection will likely miss the outbreak of the malicious code 
propagation. 

Common prevention issues 

Along with the detection capabilities, the accuracy of identification and characterization of 
the threat is a critical point. First it will make it possible to block all malicious packets and 
ensure that the threat is completely mitigated. Second it will ensure that legitimate traffic 
remains unaffected. Indeed, one of the most negative drawbacks of active security 



Mitigating Scanners and Crackers 

p.43 

devices is their “capability” to interrupt production traffic while under attack. This 
misbehavior is sometimes voluntarily caused by malicious individuals whose goal is to 
disrupt network operations. 

Another issue is the never ending debate about the necessity to completely blacklist a 
system that appears to be the source of a scanning or propagation activity. Blacklisting a 
user workstation can be realistic, as long as the system is physically accessible by a 
security engineer who will fix the issue locally. Of course this procedure is not applicable 
to remote offices where no IT competency is available. Therefore the blacklisting will 
result in a loss of productivity for the owner of the workstation.  

An alternative case, which is quite similar although more critical in terms of impact, is that 
of a server being compromised. In such case blacklisted server will block any operations 
until the issue is fixed. It clearly means that the loss of productivity will not impact a single 
user as it was the case before, but any user who needs data or applications served by 
the compromised system. On top of it,, if the compromised system appears to be a 
publicly accessible one, such as a web server, the blacklisting will result in a widely 
noticeable disruption of service and will quite likely impact the image of the company. 

These issues of accuracy and blocking scope are to be considered in the design of a 
security mechanism intended to block malicious activity. Otherwise the mitigation affects 
may be worst than those of the attack. 

Detection metrics 
Global networking activities 

Networking activity is usually measured thanks to two criteria, packet rate and bandwidth. 
Scanners and crackers are not tools designed to generate bandwidth, however 
bandwidth consumption maybe a side effect of some scanning activities even if not to be 
considered as a metric directly related to the scan activity.  

 

Table 10 : Global networking activities 
 

Operation PPS Bandwidth (Mbps) 

L2 Scans 

THCrut 87,4 0,030 

Ettercap 89,5 0,031 

L3 Scans 

Fping ECHO 25 0,020 

THCrut ECHO 126 0,051 

THCrut MASK 127 0,047 

Nmap ECHO 120 0,041 

Nmap MASK 129 0,048 

Nmap TSTAMP 120 0,053 



Mitigating Scanners and Crackers 

p.44 

L4 Scans 

Nmap Connect 1667 0,510 

Nmap SYN 1673 0,789 

Nmap FIN 839 0,383 

Nmap XMAS 1662 0,758 

Hping SYN 501 0,229 

Hping FIN 224 0,102 

Hping XMAS 224 0,102 

OS Scans 

Nmap 89 0,012 

Xprobe2 1,5 0,001 

THCrut 7 0,006 

Application Scans 

Amap 38 0,025 

Nmap 10 0,008 

HTTPrint 20 0,038 

Hmap 161 0,876 

Vulnerability scans 

Nikto 555 0,518 

Nessus 182 0,423 

NTOinsight 253 0,273 

Attack Tools 

SQLiX 24 0,255 

 

Unfortunately it clearly comes out that these metrics will not make it possible to detect all 
scanners and cracker activities. Moreover, even the highest numbers observed (around 
0,8 Mbps and 1600 pps) are not high enough to raise any alert or to clearly identify a 
suspicious source. With these metrics false-positive risk is definitely unacceptable. 

Detecting errors 

Most of scanners’ operations are based on blind testing of the remote system. Therefore 
it is obvious that they will generate errors, would it be at the networking or application 
level. This approach seems even more appropriate as some tools rely on errors, 
voluntarily generated to evaluate the behavior of the remote system. 

Then, for any protocol that involves error generation, it is interesting to observe the error 
rate of malicious activity. 

 

Table 11 : Erroneous responses 



Mitigating Scanners and Crackers 

p.45 

 

Operation Error type Error rate 

L3 Scans 

Fping ECHO ICMP Host Unreachable 77% 

THCrut ECHO ICMP Host Unreachable 40% 

THCrut MASK ICMP Host Unreachable 60% 

Nmap ECHO ICMP Host Unreachable 33% 

Nmap MASK ICMP Host Unreachable 53% 

Nmap TSTAMP ICMP Host Unreachable 33% 

L4 Scans 

Nmap Connect RST 99% 

Nmap SYN RST 99% 

Nmap FIN RST 100% 

Nmap XMAS RST 100% 

Hping SYN RST 99% 

Hping FIN RST 100% 

Hping XMAS RST 100% 

Application Scans 

Nikto HTTP Response Code > 400 0% 

HTTPrint HTTP Response Code > 400 55% 

Hmap HTTP Response Code > 400 67% 

Vulnerability scans 

Nikto HTTP Response Code > 400 99% 

Nessus HTTP Response Code > 400 98% 

NTOinsight HTTP Response Code > 400 99% 

Attack Tools 

SQLiX HTTP Response Code > 400 0% 

Hydra HTTP Authentication Failre > 99% 

 

Focusing on errors provides a better view of potential malicious activity. For port scans, 
vulnerability scans and password crackers error rations are around 99%, which doesn’t 
leave a doubt about the nature of the operation. Application scans also have good ratios 
as fingerprinting tools get about 60% of error responses, far above average of a normal 
behavior. Even L3 scans get “good” results as it is not common to get 33% to 77% of 
ICMP error messages. 

However, two categories of tools remain undetectable : L2 scanners, as ARP doesn’t 
generate errors when a physical address is requested for a non-existing IP address and 



Mitigating Scanners and Crackers 

p.46 

OS scans, that rely on various test, and therefore may generate different errors. In this 
very case analyzing errors would require first to analyze each and every tool and create a 
set of relevant errors. This would be similar to working with signatures, with the limitations 
we described above. 

Tuning error statistics 

Two of the “appropriate” categories of malicious activity identified above may not be able 
to generate the corresponding error message: L3 and L4 scanners, as they may be 
blocked by firewalls, simply dropping the request to the destination. In such specific case 
one security mechanism will prevent another one from being efficient. 

One solution would be to evaluate the global communication and not only analyze 
packets sent from the target to the source.  

At ICMP level three level of communication can be defined :  

1. ICMP REQUEST / No Response 

2. ICMP REQUEST / ICMP ERROR 

3. ICMP REQUEST / ICMP REPLY 

For TCP 5 types of communication can be identified 

1. SYN / No Response 

2. SYN / RST 

3. SYN / SYN-ACK / ACK / No Response 

4. SYN / SYN-ACK /ACK / [Data] / RST 

5. SYN / SYN-ACK /ACK / [Data] / FIN / FIN-ACK / ACK 

And UDP will support 3 types of communication 

1. Data / No Response 

2. Data / Response 

3. Data / ICMP ERROR 

If a weight is given to each category, accordingly to the probability of being a “normal” 
behavior (lower = suspicious, higher = legitimate), it becomes possible to create a model 
for each source address.  

In the case of legitimate activity most communication types have an heavy weight, and 
the communications can be visualized as in the graph below : 

 



Mitigating Scanners and Crackers 

p.47 

 
Figure 25 : Legitimate user connection profile 

 

On the opposite a malicious source which intends to scan networks and systems, looking 
for available applications will have the following model, which applies to scanners as well 
as worms attempts to propagate. 

 

 
Figure 26 : Malicious source connection profile 

 

 



Mitigating Scanners and Crackers 

p.48 

Characterization and blocking 
Common methods and limitations 
• Basics of source blacklisting 

Once a source is identified the most obvious way to prevent it from propagating malwares 
or scanning a network is to block any traffic generated by the source. As it has been 
discussed before this method makes intrusion characterization trivial but has many 
drawbacks as it is prone to block legitimate traffic and to be leveraged by malicious users 
to generate denial of service. However, in a few cases it may be interesting to consider 
using this method. 

First the risk of production loss caused by the blocking of a company’s resource is limited 
to systems that belong to the company network. It means that blocking external systems 
as source of potential intrusion should not have the production impact of the same 
operation performed on “internal” systems.  

However, spoofing of source address is still something possible. A malicious user could 
then simulate a scan initiated by a fake source that would be quickly blacklisted. This 
remains possible as long as malicious operations do not require a complete connection. 
Therefore it is very unlikely that a source would be spoofed and the blocking of a specific 
source may be considered as an appropriate solution. This is the case, in particular for 
cracking tools. 

• Improving blacklisting 

But cracking tools may still be launched from a remote system that would have been 
compromised, or behind a proxy. In this case a big part of legitimate traffic will be 
dropped and this may not be acceptable, even in the case of traffic coming from the 
outside. There are two solutions that can be applied to reduce the side effects of this 
technique.  

The first one is to limit the scope of the blocking. Instead of blocking any traffic coming 
from a source it is realistic to block only the traffic coming from a specific source and 
targeting a single destination port. This technique will prevent a global blocking of all 
traffic initiated by the source host, which could be compromised. In such case a mail 
server, hacked and used to scan for Windows RPC vulnerabilities (port TCP/135), will still 
be able to send mails while all the RPC traffic it initiates will be blocked. In the same To a 
certain extent “targeted blacklisting” will also be efficient against password cracking 
attempts. 

The second improvement is to define increasing blocking time, with a pre-defined 
maximum. Once the current aging time is expired detection engine starts again. If an 
identical source IP / destination port pair is found it will get blocked for a longer time and 
so on. This technique should prevent much false positives and reduce the impact of 
blocking legitimate traffic to an acceptable minimum. Indeed, it may be possible that for 
some reasons, a legitimate automated tool generates a high error rate. However, it is 
quite unlikely that this problem will recursively occur for ages. On the other hand worms 
don’t get “fixed”. Depending on their implementation they will either abort or keep on 
trying. In the first case the first short period blocking will efficiently stop the worm 



Mitigating Scanners and Crackers 

p.49 

propagation. In the second case, long term blocking is a solution to slow down 
propagation in such a manner that it will take ages only to scan a /28 network. 

Footprinting the threat 
• The idea of footprinting 

However improved blacklisting can be, it will only show efficiency against worms 
propagation, and especially from outside the protected network. It is then necessary to 
investigate other identification methods that will make it possible to better qualify the 
offending traffic and activate the blocking mechanism against this specific traffic. 

Ideally the prevention system should both behave as a signature-like mechanism, 
providing accurate identification of a threat, and perform dynamic analysis of potential 
threats to create filters on the fly. This would make it possible to identify any kind of 
malicious traffic without the need for upstream analysis of each and every existing tool or 
malicious piece of code, and to limit the blocking scope to that of suspicious traffic, 
leaving legitimate data without disruption of any kind. 

This dynamic identification of a potential malware can only be performed thanks to 
generic characteristics and has to be totally independent from the content and even the 
very nature of the threat; the purpose being to accurately block scans, cracks or even 
worms without any prior knowledge about the objective of the malicious operation, the 
targeted application or the tested vulnerabilities.  

The idea of footprinting is to create an identification pattern based on observed traffic. 
While the purpose of fingerprinting is to find a match between a pre-defined pattern and 
an occurring phenomenon, footprinting creates the pattern by analyzing the 
phenomenon. Obviously this operation can only be efficient if the phenomenon itself has 
been properly identified and isolated, and can only rely on an accurate detection 
mechanism, such as the error-based technique described earlier. 

• Footprints characteristics 

As previously stated, characteristics used to find footprints must be common to all 
potential threats. Therefore it is logical to start from the bottom of the network stack which 
is the common basement for all communications. 

However, starting at Layer 2 with Ethernet protocol doesn’t provide much information. 
Indeed, the Ethernet frame does not contain much information that could specifically be 
used to discriminate a specific threat. Moreover, source MAC addresses are by no mean 
useful for any traffic originated from outside the IP network where the data are gathered. 

IP is more interesting as many fields’ values may vary from one packet to another, 
according to the fact that they are generated by the generic IP stack of the system or 
hand crafted by a packet generation tool like hping or by the malicious code itself. These 
fields are given in the table below. 

 

Table 12 : Layer 3 footprint characteristics 
 
Field Size (b) Characterization use 

Differentiated Services 4 Usually unused 



Mitigating Scanners and Crackers 

p.50 

Total Length 16 Identical content identification 

IPID 16 Should be random 

TTL 8 Should vary from one source to another 

Options < 40 B Usually unused 

 

Although we get some interesting pieces information, a set of five potential characteristics 
is not enough to accurately characterize a threat and it is necessary to get additional 
information from the transport layer. 

At layer 4 we encounter two extremes, with TCP being particularly rich on one hand, UDP 
and ICPM carrying almost no information that could be exploited for footprinting on the 
other hand. 

 

Table 13 : Layer 4 footprint characteristics 
 

Field Size (B) Characterization use 

TCP  

Source port 2 Random and changing 

Sequence number 4 Random and changing 

TCP Window 4 OS specific 

TCP options - Rarely NULL 
UDP  

Source port 2 Random and changing 

ICMP 

Data NA Usually OS dependant 

Sequence number 4 Changing 

 

Last each and every application has interesting field. However, implementation is then 
dependant of the service to protect and is not likely to be made available for each and 
every existing application. However, it is still possible to provide a few examples for 
common applications such as DNS or HTTP. 



Mitigating Scanners and Crackers 

p.51 

 

Table 14 : Application layer footprint characteristics 
 

Field Size (B) Characterization use 

HTTP 

HTTP version Theoretically 1.0 or 1.1  

Method Usually HEAD, GET or POST 

Content-Length Identifies identical POSTed data 

User-Agent 

Accept 

Accept-Language 

Accept-Charset 

Changes according to the client 

X-Forwarded-For 

NA 

Identifies clients behind a proxy 
DNS 

Transaction ID 2 Random and changing 

Question count 2 Depends on the request 

DNS Query NA Identifies common requests 

 

These fields below are just examples but on top of Layer 3 and 4 information they can 
add a lot of accuracy in the footprints. 

• Reality of footprinting 

While the theory behind footprinting seems to solve most issues, it remains necessary to 
evaluate the possibility to accurately fingerprint threats we analyzed in the previous 
chapters. 

Below are some examples of efficient footprints that would accurately characterize the 
offending traffic; 

Nmap and fping IP sweeps 

Nmap and fping have only one interesting piece of information to feed the footprint : 
ICMP data. Nmap doesn’t generate any data, while fping uses a load of 54 NULL bytes, 
what is very uncommon. 

� Footprint : ICMP DATA SIZE and SOURCE IP and TTL 

THCrut IP sweep 

THCrut always uses the same ICMP sequence number of 0, making it trivial to footprint 
with an excellent accuracy as it also uses a payload of constant size (8 bytes). 

� Footprint : ICMP DATA SIZE and ICMP SEQ and SOURCE IP and TTL 

Nmap TCP scans 



Mitigating Scanners and Crackers 

p.52 

Nmap main characteristic is that is uses the same sequence number for each packet of a 
scan. Therefore, in addition to the source IP and the TTL, all detected operations can be 
accurately stopped. 

� Footprint : FLAGS and SEQ and SOURCE IP and TTL 

Hping TCP scans 

Hping probes have two very discriminative characteristics: a fixed TCP window size, 
which is not that of the host OS and no TCP options set. Once again an accurate 
footprint is easy to define based on these characteristics, the source IP and the TTL. 

� Footprint : FLAGS and TCP WINDOW and TCP OPTIONS and SOURCE IP and TTL 

HTTPrint application identification 

HTTPrint main characteristic is that it doesn’t set any HTTP Header but the URI and 
sometimes the host. Footprint is therefore trivial thanks to the NULL value of all other 
HTTP headers. 

� Footprint : USER-AGENT and ACCEPT and ACCEPT-LANGUAGE and ACCEPT-
CHARSET 

Hmap application identification 

Hmap has only one characteristic which is its User-Agent, common but quite obsolete. 
Moeover Accept, Accept-Language and Accept-Charset headers are not set, making the 
footprint accurate. 

� Footprint : USER-AGENT and ACCEPT and ACCEPT-LANGUAGE and ACCEPT-
CHARSET 

Nikto vulnerabilities scan 

Nikto has an interesting User-Agent that uniquely identify the tool : Mozilla/4.75 
(Nikto/1.36). On top of it none of the Accept, Accept-Language and Accept-Charset 
headers are set. 

� Footprint : USER-AGENT and ACCEPT and ACCEPT-LANGUAGE and ACCEPT-
CHARSET 

Nessus vulnerability scan 

Nessus looks more subtle as most headers are set. However the combination of an old 
User-Agent (IE 6.0 under windows), a limited Accept-Language (en) and a unique 
Accept-Charset (ISO-8859-1,*,UTF-8) makes fingerprinting very efficient again. 

� Footprint : USER-AGENT and ACCEPT and ACCEPT-LANGUAGE and ACCEPT-
CHARSET 

SQLiX attacks 

SQLiX uses a obsolete User-Agent (IE 5.5), and Accept, Accept-Language and Accept-
Charset headers are not set. What is more, it sets the HTTP 1.1 TE header [rfc2616], that 
could be used to be even more accurate in the footprint. 

� Footprint : USER-AGENT and ACCEPT and ACCEPT-LANGUAGE and ACCEPT-
CHARSET [and TE] 

 



Mitigating Scanners and Crackers 

p.53 

• Footprints efficiency 

Based on previous results footprints look efficient in most cases studied in this document. 
Moreover, examples clearly showed that its efficiency doesn’t rely on specific tools and 
that the technique can be used to prevent many types of threat at many different levels. 

However, the main limitation is the necessity to gather an important amount of data that 
will make statistics reliable enough to create the footprint. Therefore the footprint 
technique can only be relevant for high volume based threats and will never be applicable 
to small volume based attacks, such as banner grabbing operations (like nikto application 
identification) or low noise fingerprinting (like the sinfp technique). 

On the other hand, coupled with a detection technique that also relies on high volumes, 
and this is the case of the error-based statistics, the footprint method is probably one of 
the most appropriate technique to prevent malicious activities without the needs and the 
drawbacks of a signature database. 

 



Mitigating Scanners and Crackers 

p.54 

Conclusion 

Scope of mitigation 
Scanners and crackers usually rely on high number of tests. However traffic generated by 
these probes cannot be efficiently identified by usual network metrics such as bandwidth 
or packets rate.  

Focusing on error rate appeared to be more efficient, as long as errors are effectively 
generated and based on standard mechanisms. In this case we demonstrated that 
detection accuracy was excellent for network scans, application identification and 
vulnerability scans. Based on the fact that most OS fingerprinting tools rely on network 
scans results, it can be considered, as a side effect, that this category of operation is also 
efficiently detected by the error-based mechanism, with one noticeable exception : sinfp. 

Once high number of data can be gathered and analyzed we observed that footprinting is 
a valuable solution that will make it possible to block even more threats, exploitation tools 
being now covered by this technology.  

N
et
w
or
k

O
S

A
pp
lic
at
io
n

S
cr
ip
ts

D
is
co
ve
ry

Id
en
tif
ic
at
io
n

E
xp
os
ur
e

E
xp
lo
ita
tio
n

U
se
rs

 
Figure 27 : Threats map coverage 



Mitigating Scanners and Crackers 

p.55 

Back to the threat map, the combination of those two techniques covers most of the 
issues with a major exception for layer 2 scanning and attacking techniques. 

Future work and improvements 
Two major fields are to be investigated in order to make this technology even more 
efficient: sensitivity tuning and application coverage. 

The sensitivity can be improved both for the detection engine, in order to detect scans or 
cracking attempts faster and for the footprinting mechanism. Indeed the need for a large 
number of packets delays detection and blocking of the offending traffic, making it 
possible either to get some information or even to compromise a few systems. 

Large application footprints coverage is a necessity to cover more accurately scanners 
and crackers that will usually focus on multiple services. Moreover the capability to 
efficiently footprint application such as e-mail would lead to another field of application: 
detection and blocking of mass-mailing misbehavior, such as spam, phishing or even 
virus propagation, without any signature.  

 



Mitigating Scanners and Crackers 

p.56 

 

Appendices 

Appendix A : References 
Documents 

[appdefs] Application definition files for amap – http://freeworld.thc.org/thc-
amap/appdefs.resp, http://freeworld.thc.org/thc-amap/appdefs.trig 

[artofscanning] The Art of Scanning – Fyodor - Phrack Magazine #51 – 
http://www.phrack.org 

 [xprobe-wp] Xprobe v2.0 A “Fuzzy” Approach to Remote Active Operating System - Ofir 
Arkin, Fyodor Yarochkin - http://www.sys-security.com/archive/papers/Xprobe2.pdf 

Standards 

[rfc793] Transmission Control Protocol – RFC 793  

[rfc950] Internet Standard Subnetting Procedure – RFC 950  

[rfc1323] TCP Extensions for High Performance – RFC 1323 

[rfc2616] Hypertext Transfer Protocol -- HTTP/1.1 – RFC 2616 

[rfc3168] The Addition of Explicit Congestion Notification (ECN) to IP – RFC 3168 

Tools 

[arpwatch] ARPwatch - http://ee.lbl.gov/ 

[brutus] Brutus AET2 – http://www.hoobie.net/brutus/ 

[ettercap] Ettercap – http://ettercap.sourceforge.net 

[fping] fping – http://fping.sourceforge.net 

[httprint] httprint – http://net-square.com/httprint/ 

[hydra] TCH Hydra - http://freeworld.thc.org/thc-hydra/  

[metasploit] The Metasploit framework – http://www.metasploit.org 

[nessus] Nessus – http://www.nessus.org/ 

[nmap] NMAP, the network mapper – http://www.insecure.org/nmap 

[nikto] nikto – http://www.cirt.net/code/nikto.shtml 

[ntotools] NTOinsight – http://www.ntobjectives.com 

[sara] SARA, Security Auditor Research Assistant – http://www-arc.com/sara/ 

[siftwms] SIFT Web Method Search – http://www.sift.com.au 

[sinfp] sinfp - http://www.gomor.org/cgi-bin/sinfp.pl 

[sipscan] SIp Scanner – http://www.hackingvoip.com 

[sqlix] SQLiX – http:// www.owasp.org/index.php/Category:OWASP_SQLiX_Project 

[sqlninja] SQLNinja 

[svmap] svmap - sipvicious tools – http://sipvicious.org 



Mitigating Scanners and Crackers 

p.57 

[thcrut] THCrut - aRe yoU There – http://freeworld.thc.org/thc-rut/ 

[venom] – Venom – http://www.cqure.net 

[voiphopper] – VoIP Hopper - http://voiphopper.sourceforge.net/ 

[wikto] – Wikto - web server assessment tool – http://www.sensepost.com/research/wikto/ 

[xprobe] Xprobe2 – http://xprobe.sourceforge.net 

[yersinia] – Yersinia - http://www.yersinia.net/ 

 

Appendix B : Command Lines 
Layer 2 scans 

� THCrut  

ARP scan : #thcrut arp 192.168.205.1-192.168.205.254 

 

Layer 3 scans 

� Fping  

Ping scan : #fping –aA –g 10.0.0.1 10.0.0.255 2>/dev/null  

� THCrut  

Ping scan : #thcrut icmp –P 10.0.0.1-10.0.0.255 

Netmask scan : #thcrut icmp –A 10.0.0.1-10.0.0.255 

� Nmap 

 Ping scan : #nmap –sP –PI 10.0.0.0/24 

 Netmask scan : #nmap –sP –PM 10.0.0.0/24 

Timestamp scan : #nmap –sP –PP 10.0.0.0/24 

 

Layer 4 scans 

� Nmap : 

 TCP Connect scan : #nmap –P0 –sT –p 1-1024 10.0.0.101  

 TCP Half scan : #nmap –P0 –sS –p 1-1024 10.0.0.101  

 TCP FIN scan : #nmap –P0 –sF –p 1-1024 10.0.0.101  

 TCP XMAS scan : #nmap –P0 –sX –p 1-1024 10.0.0.101  

� Hping : 

 TCP Half scan : #hping --scan 1-1024 –i u10 –S 10.0.0.101 

 TCP FIN scan : #hping --scan 1-1024 –i u10 –F 10.0.0.101 

 TCP XMAS scan : #hping --scan 1-1024 –i u10 –FUP 10.0.0.101 

 

 



Mitigating Scanners and Crackers 

p.58 

 

OS scans 

� Nmap : 

Fingerprinting : #nmap -O -P0 -p 3,443 10.0.0.105  

� Xprobe2: 

Fingerprinting : #xprobe2 -p tcp:3:CLOSED -p tcp:443:open -p udp:1 :closed -
p udp:135:open -p udp:161:open -p tcp:139:open 10.0 .0.105 -v -D 1 -D 2 -D 
3 -D 4 -D 5 

� THCrut 

Fingerprinting : #thcrut discover -O 10.0.0.105  

� sinfp : 

Fingerprinting :#sinfp.pl -i 10.0.0.105 -p 80 

 

Application scans 

� Nmap 

Banner grabbing : #nmap -A -P0 -p21,25,80,135,443,3306 10.0.0.105  

� Amap 

Fingerprinting : #amap 10.0.0.105 21 25 80 135 443 3306  

� httprint 

Fingerprinting : #httprint -h 10.0.0.105 -s signatures.txt   

� hmap 

Fingerprinting : #python hmap.py http://10.0.0.105:80  

� nikto 

Banner grabbing : #nikto.pl -findonly -host 10.0.0.101  

 

Vulnerability scans 

� ntoinsight 

Vulnerability scanning : #ntoinsight.exe -ntoweb -h 10.0.0.207 -np  

� nikto 

Vulnerability scanning : #perl nikto.pl -Cgidirs all -generic -host 
10.0.0.207  


